NP-complete problems

A variety of NP-complete problems

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Packing problems:
- SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Sequence problems:
- HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a directed graph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

 Claim. G has a Hamiltonian cycle iff G' does.

Proof. Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.

Suppose G has a directed Hamiltonian cycle Γ.

Then G' has an undirected Hamiltonian cycle (same order).

Suppose G' has an undirected Hamiltonian cycle Γ'.

Γ' must visit nodes in G' using one of following two orders:

$\cdots, B, R, G, B, R, G, \cdots$

or

$\cdots, B, G, R, B, R, G, \cdots$

Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.

Claim. G has a Hamiltonian cycle if G' does.

Proof.

Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.

Suppose G has a directed Hamiltonian cycle Γ.

Then G' has an undirected Hamiltonian cycle (same order).

Suppose G' has an undirected Hamiltonian cycle Γ'.

Γ' must visit nodes in G' using one of following two orders:

$\cdots, B, R, G, B, R, G, \cdots$

or

$\cdots, B, G, R, B, R, G, \cdots$

Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.
3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT \(\leq_P\) DIR-HAM-CYCLE.

Proof. Given an instance \(\Phi\) of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff \(\Phi\) is satisfiable.

Construction. First, create a graph that has \(2^n\) Hamiltonian cycles which correspond in a natural way to \(2^n\) possible truth assignments.

For each clause, add a node and 6 edges.

Claim. \(\Phi\) is satisfiable iff \(G\) has a Hamiltonian cycle.

Proof. \(\Rightarrow\)
- Suppose 3-SAT instance has satisfiable assignment \(x\).
- Then, define Hamiltonian cycle in \(G\) as follows:
 - if \(x_i = 1\), traverse row \(i\) from left to right
 - if \(x_i = 0\), traverse row \(i\) from right to left
 - for each clause \(C_j\), there will be at least one row in which we are going in the "correct" direction to include node \(C_j\)

\(3-SAT\) Reduces to Directed Hamiltonian Cycle

Traveling Salesperson Problem

TSP. Given a set of \(n\) cities and a distance function \(d(u, v)\), is there a tour of length \(\leq D\)?
Traveling Salesperson Problem

TSP: Given a set of n cities and a distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Graph Coloring

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

K-Coloring and Register Allocation

Generalization: k-coloring
Arises in when trying to allocate resources in the presence of constraints

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

3-Coloring

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

K-Coloring

Value of k affects the difficulty of the problem:
- A graph is 2-colorable iff it is bipartite
- 3-Coloring is NP-complete.
3-Coloring

Claim. $3\text{-SAT} \leq P 3\text{-COLOR}$.

Proof. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Initial construct:

Properties:
- T, F, B each receive a different color, and literals receive the colors T, F
- The nodes for x_i and \bar{x}_i each receive a different color (T, or F)

Gadget that represents a clause:

If the clause is not satisfied the gadget is not 3-colorable

$$C_i = x_1 \lor \bar{x}_2 \lor \bar{x}_3$$

This node can't be colored!

If the clause is satisfied the gadget is 3-colorable

$$C_i = x_1 \lor \bar{x}_2 \lor \bar{x}_3$$

If the clause is satisfied the gadget is 3-colorable

$$C_i = x_1 \lor \bar{x}_2 \lor \bar{x}_3$$

3-Coloring

Claim. Graph is 3-colorable iff Φ is satisfiable.

Proof. Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
- (i) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
3-Coloring

Claim. Graph is 3-colorable iff Φ is satisfiable.

Proof. Suppose graph is 3-colorable.
- (i) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (iii) ensures at least one literal in each clause is T.

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski’s Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.
Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR \(\leq_{P}\) PLANAR-GRAPH-3-COLOR.

Proof sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.

Planar k-Colorability

PLANAR-2-COLOR. Solvable in polynomial time.

PLANAR-3-COLOR. \(\text{NP-complete.}\)

PLANAR-4-COLOR. Solvable in \(O(1)\) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR.

Polynomial-Time Reductions

- 3-SAT
- INDEPENDENT SET
- DIR-HAM-CYCLE
- VERTEX COVER
- SET COVER
- 2D-HAM-CYCLE
- GRAPH 3-COLOR
- HAM-CYCLE
- PLANAR 3-COLOR
- SCHEDULING
- SUBSET-SUM
- PACKING AND COVERING
- SEQUENCING
- PARTITIONING
- NUMERICAL

Dick Karp (1972)

1985 Turing Award