Measuring Data
Dependency Complexity

o
~

James M. Bieman
Wwilliam R. Edwards

TECHNICAL REPORT 83-5-3

July, 1983

Copyright (c¢) 1983
Computer Science Department
The University of Southwestern Louisiana
P.0. Box 44330, Lafayette, Louisiana 70504
(318) 231-6284
All Rights Reserved

MEASURING DATA DEPENDENCY COMPLEXITY

1 Introdugction.

Although much research has been directed towards
measuring the complexity of the programmer/program interface,
most of this work has centered on the measurement of flow of
control complexity., McCabe's [76] presentation of cyclomatic
complexity is an example of the modeling and measurement of
flow of control complexity.

Weiser [82] found that programmers seem to work
backwards when debugging, examining only instructions that
affect the variables in error. Weiser's results demonstrate
the 1importance of data dependencies and indicate that a
measure of data dependency complexity would be a useful tool
for the development of reliable and maintainable software.

Before measures of data dependency complexity can be
deriveds, we must have a model of the data dependencies within
a program, The model we have developed is the data
dependency graph (0DG).

The DDG is a directed graphs, with ¢ach node representing
a variable definition and each edge representing a data
dependency. To construct a bDG 1t is necessary to collect

Live definitions from alternate pathways to determine

J.M. Bieman Measuring Data
W.R. Edwards bependency Complexity 2

dependencies of a given variable definition,

We present an algorithm to generate DDG's from arbitrary
programs written in procedural languages and we use the DDG
to develop measures of software complexity, The algorithm is
driven by a scanner that can recognize variable definitions
and flow of control constructss, and uses knowledge of the
live definitions and the variables that determine control
flow.

We use the DDG and the condensed DDG to derive measures
of definition and variable activity, coverage, parallelism,

adjacencys, and sel f dependency.

2 DRate Dependencies.

A data dependency exists when the value of a wvariable
may depend on the value of another variable or an earlier
value of the same variable. bata dependency complexity is
the complexity of the programmer/program interface resulting
from the combination of all of the data dependencies in a
program,

The DDG models program complexity from the programmers
point of view, and is an abstraction of the complexity that
the programmer must deal with, The programmer views a
program as a static representation of a dynamic entity, a
program in execution. The program specifies more than what
will occur during an individual execution, rather the program

specifies the possible actions during all executions. As

USL Computer Science Dept.
3

Weiser [81] found, experienced programmers seem to decompose
programs into sliges when debugging., A slice 1is a program
after the deletion of all statements that do not affect the
value of a specified variable at a given statement. A slice
1s one representation of the search space that the programmer
must examine in detecting the source of an error and is
created by wusing a subset of the data dependencies in a
program segment. The DDG is a representation of all of the
possible data dependencies that may exist during any
particular execution., The more complex the data dependencies
in a program, the larger the search space that the programmer
must contend with when searching for the source of a bug, or.

in Weiser's terms, the larger the slice.

3 1Ibe Date Lepepndengy Graph.

The DDG is a directed graph representation of the
possible data dependencies in a program. We say that a data
dependency exists in a program when the value of one variable
may affect the value of another or possibly the same variable
during execution of the program. The wvariable that is
modified is called the dependent variable and the variable
that may affect it is called the independent vartable. The
boG is a representation of all of the individual data
dependencies within a program.

The DG consists of nodes and edges., t he nodes

representing data objects and the edges representing the

JeM., Breman Measuring Data
WeRe Edwards Dependency Complexity 4

dependencies,

In constructing a 0ODG representation of a program, a
node is used to represent each variable definition, rather
than each variable, A variable definition is a statement
that may modify the value of a variable, such as assignment
statements, procedure calls, and input statements [Hecht?7].
We will assume that initialization or the initial state of a
variable is a definition. Each node is labeled with a name
identifying the wvariable that the node represents and a
subscript. The subscript distinguishes between nodes
representing different definitions to the same variable and
and are sequentially numbered based on the relative position
of the definition in the source code.

Edges represent all possible data dependencies resulting
from all variable definitions. Consider definition d of
variable V. befinition d is dependent on a set of
independent variables I. An edge is constructed for each
definition of variables in I that can reach d. A definition
can reagch a statement if there 1S a path clear of
redefinition in the control flow graph from the definition to
the statement., Oveido [80] used similar notions to develop 4
measure of cata flow complexity’ however he did not

represent the complexity of the entire program with a graph.

USL Computer Science Dept.

3.1 Dependengy Sourges.

A variable definition may depend on the value of several
independent variables for a variety of reasons. A dependency
can be 1 a Jiregct dependency that can be determined by
evaluating an individual statement or 2) a coptrol
dependengy that is determined from the mechanism that
determines the flow of control,

Direct dependencies can be determined by examining an
individual statement. Every possible data dependency
resulting from the execution of the statement (isclated from
the rest of the program) is represented by an edge.
Statements that cause a change in the value of wvariables
include assignment statements, procedure calls, and iterative
control structures.

Consider an assignment statement of the form

Y 1= f{(A,8,C)

where Y, A, B, and < are variables and f represents some
combination of operations on A, B, and C. There are 3
dependencies evident from the statement since the assignment
to Y depends on A, Bs, and C. A DDG of the above assignment

statement 1is shown in figure 1.

J.Mm. Bieman Measuring Data
W.R. Edwards bependency Complexity 6
| [{mmm e e e o A
| | fomm ot
l ' Q.‘--l
Y jKmmmm e I B |
| | et
| | .
! | e e e I C 1

Figure 1. Simple Assignment DDG

Because we cannot determine the actual data dependencies
that may result from an external procedure calls, we must
include all possible data dependencies in the DDG. The
direct data dependencies that wmay result from an external
procedure call statement depend on the modifiability of the
procedure arguments, For example, if all of the parameters
to a procedure are called oy reference and cannot be
protected from modification by the called procedure, then
each argument may be affected by the value of all of the

arguments. C(Consider the procedure call statement of the form

CALL P (X, Y)

Assuming that the parameters are passed using the call by
reference convention and each argument may be modified by
procedure P, figure 2 illustrates the DDG for the external

procedure call statement isolated from the remainder of the

program.,

USL Computer Science Dept.

7
FoXT e e e b XC
' 'mmmmm o . | |
| S, ' PR, po
e T T - ' ! ._--.
| J<omem= tot - |
YT I e e e - I YOl
| ¥ Voo ¥
Figure 2. External Procedure Call DDG
Note that in figure 2 the new definitions of X and Y are

represented by duplicate nodes with incremented subscripts.

Global variables that may be referenced or modified bty a
called procedure results in additional data dependencies. To
include the influence of global variables in the model, we
treat global wvariables referenced or modified by the
procedure as if they are arguments of the procedure call.

It is clear that iterative control structures are also a
source of a direct dependency. In a statement of the

form

FOR I = A TO B 8Y J.,

the value of I depends on the values of A, 8, and J., and the

bDG of the above statement is il lustrated in figure 3

J.M. Bieman Measuring Data

WeRs Edwards Dependency Complexity 8
| R it I A |
I i tm
| | ==
I 1 [<=omm e ==~ I B |
| | -
I ' .-.--.
| R e Iy

Figure 3. Iterative Control Structure Graph

AlLL of the dependencies resulting from one specific
statement cannot be determined by examining the statement in
isolation. An assignment to a variable 1in statement S s
dependent on the wvariables wused in the control constructs
that determine whether S will be executed. The effect of
control constructs on the DDG, in particular the effect of
IF-THEN-ELSE and loopss, can be illustrated with an example.

Consider the if-then-else construct

IF X <Y
THEN A := B
ELSE A = (
D = A

Because the assignments to A are within the range of the
effect of the boolean expression in the IF statement, the
assignments to A are dependent on the variables in the
boolean expression in addition to the wvariables in the
expression side of the assignments. The DDG regcresentation

of the IF-THEN-ELSF statement is shown in figure &

USL Computer Science Dept.

9
| R R >1 |
| ! rem [[
[I - [[
| A0 I<======m- LY I==m=====>1 A1 |
[| Peoe [[
| I - o [|
| - I ¢ i===>1 |

t e == U e b t | [, ¢

Figure 4, IF-THEN-ELSE DDG

The assignment of value to D in the code segment above i1s not
directly dependent on the variables in the boolean expression
fotlowing the IF because it 1s out of range of the
IF-THEN-ELSE construct. However, because it is possible that
A received its value in either the IF assignment or the ELSE
assignment, D 1s dependent on both assignments to A, To
incorporate the assignment to D in the DPG graph 1lilustrated
in figure 4, edges must be drawn from the nodes labeled AQ

and A1 as shown in figure 5,

|
¢
i
|
t

- — - -

i f<=mmmmmm- | X f===m====>| |
| ! Peee ! |
! ! . | |
I AD I<====-- -1 Y fmmemmmm- >I A1 |
! ! oot | s
| ! - . ! |
! l<-==1 3 I I ¢ 1=-==>1 |
b = ! [RS | | J— | L}

| o [

R ettt S R R it '

Figure 5. IF-THEN-ELSE DDG with assignment

Loop control structures require special examination.

JM. Bileman Measuring Data
WeR. Edwards Dependency Complexity 10
Consider the following code segment
A = 8
WHILE X > Y DO
C = A
A = D
END WHILE
ALL wvariable assignments in the body of the loop are
dependent on the wvariables X and Y within the boolean
expressions, since these wvariables determine how many times
the body of the loop is executed. The assignment to (is
cdependent on both assignments to A, since it is possible, at
that point, that the value of A could have been set either

before or within the body of the loop.
segment above is illustrated in figure 6
I R
t e t
|
V
I X0l====—e-- > CO0l<-mmmmen e
LIV | | RS]
| -
| | am-=-
{ | l
l -—. I
I I All<—mmm
TP > | | Kmmmm e -
| R)
Figure 6. WHILE loop DDG

We assume that loops terminate;

of the variables in the loop exit

thus the range of the

controlling

The DDG of the code

- -

I Ol

effect

boolean

USL Computer Science Dept.
11

expression is limited toc the body of the loop.

5.2 Live pefinitigos.

In order to use the correct independent definitions of
variable y to use as the source node at variable definition d
dependent on y, we must know which definitions of y ¢an reach
d. A definition is <considered ljiye at statement s if the
value assigned may stitl be present on execution of s,
betermining the Llive definitions is a prerequisite for
constructiing the DDG.

There are three flow of control constructs that must be
considered in determining which variable definitions are live
at any particular statement - branches, joins, and sequential
codea

A variable definition for x kills alt definitions that
were live for the straight lLine code just before the new
definition, wunless the new definition is a erobable
Jdefipition such as a procedure call parameter. Since 1n that
case the procedure parameter might not be modifiedsr earlier
definitions for the parameter remain Llive. At a branch point
all live definitions remain Live on the branches wuntil
redefined. The Llive definitions after a join point consist
of the union of all of the definitions that were live on each
predecessor of the join.

Loops are special cases of branches and joins. The loop

exit is a branch, with one successor being the Loop entrance

J.M. Bieman Measuring Data
W.R. Edwards Dependency Complexity 12

and one successor being the code following the loop. The
loop entrance is a join, where one predecessor is the code
for the first entrance and the other predecessor is the loop
exit.

An assignment to an array element must be considered,
Since an assignment to an array element modifies the contents
of the array, the assignment creates a new definition and
kills the old cefinition. However, since many of the array
elements remain the same as before the assignment, the new

definition is dependent on the old definition.

3.3 B2G Algorithe

The DDG algorithm 1is designed to be included in a
scanner that can recognize variable definitions, Lloop
constructss branch statements, and labels for an ALGOL-like
language. The input to the scanner is the program and the
output 1s a file containing ordered pairs of labeled nodes or
an incidence matrix, where, again, the nodes represent
variable definitions and the pairs represent the individual
cdata dependencies. Note that the algorithm generates no
multiple edges. The algorithm and the main data structures
that store critical information during a parse are described
below.

Rata Structures

- A set DEF which, for each variable v defined in statement

ns, contains an element vn representing the variable

USL Computer Science Dept.
13

definition.

- For each wvariable wvs & tree LIVE(v) where each node
contains a set of variable definitions which is a subset of
DEF. The LIVE trees are used to save and restore the names
of live definitions as necessary during flow of control
branches and joins, It is necessary to use a tree because
the live definitions along alternative pathways must be saved
on tree branches so that at a join point the alternative sets

of live definitions can be merged.

- A stack CONTROL whose members are sets of wvariable
definitions., subsets of DEF. The CONTROL stack is used to
save and restore the names of definitions wused in flow of

control boolean expressions.

- A set EDGES which is a4 subset of DEF X DEF., may be
represented as a list of pairss an incidence matrixs, or 3
table, EDGES contains the running list of DDG edges as the
algorithm recognizes them. It becomes the final output of

the program.

- A set PATCHES which is a set of ordered pairs (a, b)Y, where
a 1is a string used for identification and b is a member of
DEF. The PATCH set is used to store a list of modifications

to EDGES to be done after the completion of the parse,

J.M, Bieman Measuring Data
WeR. Edwards Dependency Complexity 14

- For each internal procedure p, a set GLOBALS_SET(p) and a
set GLOBALS_REF(p) where the members of both sets are
variable names., The GLOBAL sets are used to determine which
gltobal variables to treat as input and/or output arguments at
procedure call statements.

Algorithm

A. During an initial parse, the GLOBAL_SET and GLOBAL_REF
sets are filled in with the names of global variables set
and/or referenced by internal procedures.

B. Sequentially processing statements 1in a syntactically
legal programes For each statement n of a program execute

one of the cases depending on the statement type.

(1) Scalar assignments, y := f(x1s X2suuer xi) :

- Using the LIVE trees, determine the Live
definitions, L, for x1 to xi.

- Using the CONTROL stack, determine the set of
definitions, C(, that determine current flow of
control.

- For all elements v of L U C» add (v, yn) to EDGES.

- Replace the current set of live definitions oan the

LIVE(y) tree with {ynl}.

(2) Array assignments, y(x1s oo xj) 1= fUXxj+Tseuar xi) :
- Use case (1) above to process as if the assignment

were;

USL Computer Science Dept.

15

y M f(y’ X?t » o/ X1)

(3 Procedure call statement,

CALL P(xTreuor xk 3 Y1 reaarym) :

(Note: x1s,.e.rxk are input arguments and yl,...,ym are

output arguments)

(4

If P is an internal procedure use the GLOBAL(P) sets
to determine the global variables, R, that are
referenced and the global variables, S, that are set
by procedure P,

For each element u of y1 U ... U ym U S, wuse the

following procedure:

- Using the LIVE trees, determine the set of live
definitions, L, for x1 to xi and R,

- Using the CONTROL stack, determine the set of
definitions, (, that determine current flow of
control.

- For all elements t of L U C, add (ts, un) to EDGES.

= Add un to the current set of live definitions on

the LIVE(u) tree.

Decision statement,

IF BUxTsauawsr xi1) THEN ST ELSE S2 :

(where B is a boolean expression)

= Push onto the CONTRGL stack the wunion of the

current top of t he stack and the current live

.M. Bieman

Measuring Data

J
W.R., Edwards Dependency Complexity 16

(5)

definitions of xT.aeuxia

(reate two child nodes of the current node in each
LIVE tree with each child containing a copy of the
contents of the current node.

Push onto CONTROL a copy of the top of CONTROL.
Using the first child node in each LIVE tree as
the current node, process S$1.

Pcp the top off of CONTROL.

Push onto CONTROL a copy of the top of CONTROL.
Using the second child node in each LIVE tree as
the current node, process 52.

Pop the top off of CONTROL.

Replace the contents of the parent LIVE nodes with
the union of the contents of the child nodes,

Free the child nodes making the updated parent
node the current LIVE node.

Pop the top off of CONTROL.

Loop statement, WHILE B{(xTsewesr xi) do S:

Push onto CONTROL the unicn of the top of CONTROL
and the live definitions for x1,...rxi.

Acd a loop_dummy(v,n) definition to each LIVE(v)
tree,

Process S.

Replace each occurrence in EDGES of the loop_dummy

with the current definition for the respective

USL Computer Science Dept.

(6)

(7)

17
variable,
Labeled statement, L: § :
- Add to the top of CONTROL a

control_Llabel_dummy(L).

Add a live_label_dummy(Ls,v) to each LIVE(v) tree.
(The , dummy definitions are added so that they can
be replaced by the correct sets of control and
live definitions after all of the go to statements

that use L are parsed.)

Go to statements, GO TO L :

for each element u in the top of CONTROL add to
the PATCH set (CONTROL _LABEL_DUMMY (L)Y, u).

Pop the top off of CONTROL.

Push the empty set onto CONTROL since the <current
control definitions cannot affect code following a
go to statement,

For each variable v in the program, add to the
PATCH set (Live_label_dummy(L,v Yo CURRENT (v))
which will be wused to replace instances of
live_Llabel _dummy(L,v) in EDGES at the conclusion
of the parse.

Replace the contents of the current node 1in each
LIVE tree with the empty set since the current

Live definitions are not necessarily Llive in

J.M. Bieman Measuring Datas
WeRe Edwards Dependency Complexity 18

statements following a go to.

(8 End of program statement:
- For each dummy element u in the PATCH list, where
u = (dummy_id, 2)s for each element w of EDGES
where dummy_id is contained in w, add w' to EDGES.,
where w' is w but with each instance of dummy _1d
replaced with z.
- delete all edges containing dummy elements from

EDGES.

4 Data Depepdepcy (omplexity Metrics.

The DDG is an abstract model of the data dependency
complexity of a program. Using modified versions of the
algorithm presented, a DDG can be constructed for arbitrary
programs written in most procedural languages.

As the control flow graph has been used as a basis for
deriving control complexity measures [McCabe76, Chen?78,
Harrison82l, the DDG can be used to derive data dependency
complexity measures. AlLL possible data dependencies in a
program are modelled by its DDG and., since the DDG is a
graph, measurable graph features of the DDG are candidates

for complexity measures.

USL Computer Science Dept.

19

4.1 Eeatures of the DDG.

Some of the features of the DDG that are useful in

defining metrics include:

Order(g) - the number of nodes in graph g.
Connectivity Graph {(xrg3) - maximal connected
subgraph of graph g that includes node x.
Condensed DDG(p) ~ A graph constructed from
ODDG(p) such that there is a node for every
variable in p rather than for each definition.
Edges correspond to the edges in DDG(p). The
BDG(p) nodes for one variable are combined into
one node 11n the condensed graph. For each edge
that is incident to node wvn (representing a
definition) in the DDG, there a node incident to
node v (representing a variable) in the condensed
DDG.

Definition Slice Graph(xs,p) =~ Subgraph of DDG(p)
that includes node x and all nodes in DDG(pJ that
are predecessors of node x. Edges include all
paths from predecessors to x.

befinition Influence Graph(x,p) - Subgraph of
BDG(p) that includes node x and all nodes in
DDG(p) that are successors of x. Edges include
all paths from x toc predecessors.

Indegree(x) - Number of edges entering node x.

J.M. Bieman Measuring Data

WeR. Edwards Dependency Complexity 20
- Outdegree(x) - Wumber cf edges leaving node x.
- Degree(x) - indegree(x) + outdegree(x)
- Bridge - A bridge is an edge contained in 3

connected graph whose removal from the graph
results i1n a disconnected graph.
- Cycle = A cycle is a sequence of edges with the

same initial and terminal node.

4.2 Proposed Metrigs.

The DDGs the condensed DDG ., and subgraphs of either
graph can be used as a Dpasis for deriving complexity
measures, The DDG can be mapped to actual statements and can
be used to measure the complexity of individual cefinitions,
The <condensed DDG is useful for determining activity around
specific variables and memory locations and can be used to
show wvariable self dependencies. Candidate retrics are
described in the remainder of this section.

Pefinition Agtiviiy - Ddefinition Activity can be
measured as the indegree and outdegree of DDG nodes.
Important program ag¢tivity cooplexity measures include mean,
median, and standard deviation of the indegree and outdegree
of the DDG nodes in a program. High activity nodes based on
high indegree and/or outdegree indicate highly active
definitions. Note that the sum of the indegree for all nodes
in a program is similar to Oviedo's [80] data flow complexity

measure except that Oviedo used sequential code blocks rather

USL Computer Science Dept.
21

than definitions as nodes and the indegree of a DDG node
includes the effect of control dependencies, The activity
measures could also be applied to the condensed 0DG and would
indicate varigble gag¢tivity rather than definition activity.
Coverage Metrics - Based on Weiser's [811 candidate
slicing metrics, coverage metrics measure how much of the DDG
is contained in each definition slice or definition
influence. We propose the following coverage metrics:
- Dbefinition Slice Coverage(x,p) =
Order(Definition Slice(x))
 ordercovstry
where x is a definition and p 1S a program.
- Program Slice Coverage(p) is the mean definition
slice coverage for all definitions in program p.
Similarly we can determine Defipitiop Influence Coverage
- befinitien Influence Coverage(x,p) =
Order(Definition Influence(x,p))
O ordercovsorr T
- Program Influence C(cverage(p) is the mean
definition influence coverage for the entire
progra@.
We can also derive connectivity measures such as
- Definition Connectivity Coverage(x,p) =
Order(Connectivity Graph(x.,p))

TR R T e e et et e - — - ————

Order (p)

J.Me Bieman Measuring Data
W.R. Edwards bependency Complexity 22

- Program (Connectivity Coverage(x,p) is the mean of
the Definition Connectivity Coverage for all
definitions in a program.

Barallelism. Another of Wiser's [811 proposed slicing
metrics is parallelism which can be applied to a DDG. We
will say that ppG Parallelism is the number of different
connectivity graphs in a DDG. Another possible parallelism
measure 1S the number of bridges in a DNG.

Adjagcency. The adjacency measure is the average of the
difference in statement numbers between adjacent nodes. The

adjacency measure will show how spread out the interdependent

definitions are in the source code. We assume that
programmer effort s related tc the distance between
dependent statements. The adjacency measure parallels

Elshoff's [76] span metric.

Self Devendency Measurement. Self dependency is the
dependence of a definition node or variable upon itself,
These measures could be applied to the condensed DDG as well
as the DDG and include

- self dependency ratio =

Humber of Nodes in DDG(p)
that are successors to themselves

AR ke e i ——— — ————— —————— - - —a—

Order(DDG(p))

= number of cycles in a bDG

USL Computer Science Dept.
23

> Supmacry and Research Directions.

In this report, the data dependency graph was described,
aspects of DDG construction were discussed, an algorithm for
building the DDG was outlined, and a set of candidate data
dependency metrics were introduced.

We plan to continue to refine the models of data
dependency complexity and the associated metrics. Empirical
work will be conducted in order to evaluate the proposed

metrics and compare these new metrics with existing metrics.

Referencges

{Chen78] Chen, Edward T. "Program Complexity and Programmer
Productivity,” IEEE Iransactions Qn Software

Engineering, SE-4, 3 (1978), 187-194.

[Elshoff76] Elshoffs, JuLesr "An Analysis of Some (Commercial
PL/1 Programs,” JEELE Iransactiogns on Software
Engipeeripys, SE=2, 2 (1976), 113-120. Also in Victor R.
Basili, editor, Iutorial on Models and Petrics for
software Management and Eongipeerings, IEEE Catalog No.

EHO=167-7, (1680), 266-273.

LHarrison82] Harrison, Warren, €. Magel, R. Kluczny, and A,
DeKocks, "Applying Software Complexity Metrics to Program

Maintenance," (omputer, 15, 9, September (1982), 65-79.

[Hecht??] Hecht, HMatthew S.., Elow Apalysis of (owmputer

Programs, tlsevier North-Holland, 1977,

{McCabe?761 McCabe, Thomas, "A Complexity Measure," JEEE

Iransactions 9on Software Engineering, SE-2, 4 19763,

308-320.

2[‘

25

LOviedo80] Oviedo, E.,» "Control Flows Data Flow and Program

Complexity,” Proc, CQUPSAC80, 146-152.

LWeiser81] Weiser, Mark, "Program Slicing," Broceedings gof

Lthe 2th lotecnatignegl fonferenge 0 softuware

Engineering, (1981), 439-449,

[Wweiser821 wWeiser, Mark, "Programmers LUse Slices When

bebugging", (ommunications of the ACH, 25, 7. July 1682,

Gb6—-452,

