
TO APPEAR IN Proceedings Automated Software Engineering 2001 Conference (ASE 2001), NOV. 2001. 1

A Technique for Mutation of Java Objects

James M. Bieman Sudipto Ghosh Roger T. Alexander
Computer Science Department

Colorado State University
Fort Collins CO 80523, USA

fbieman, ghosh, rtag@cs.colostate.edu

Abstract

Mutation analysis inserts faults into a program to create
test sets that distinguish the mutant from the original pro-
gram. Inserted faults must represent plausible errors. Stan-
dard transformations can mutate scalar values such as in-
tegers, floats, and character data. Mutating objects is an
open problem, because object semantics are defined by the
programmer and can vary widely. We develop mutation op-
erators and support tools that can mutate Java library items
that are heavily used in commercial software. Our mutation
engine can support reusable libraries of mutation compo-
nents to inject faults into objects that instantiate items from
these common Java libraries. Our technique should be ef-
fective for evaluating real-world software testing suites.

1. Introduction

Mutation analysis aids in the assessment of the adequacy
of tests [9]. It involves the modification of programs to see
if existing tests can distinguish the original program from
the modified program. Traditionally, syntactic modifica-
tions have been used. A set of mutation operators gener-
ate the syntactic modifications, which are determined by the
language of the program being tested, and the mutation sys-
tem used for testing. Mutation operators are created with
one of two goals: to induce simple syntax changes based
on errors that programmers typically make (such as using
the wrong variable name), or to force common testing goals
(such as executing each branch).

One way to conduct program modification is to change
data values while a program is running. We are developing
a mechanism to conduct mutation analysis of objects rather
than just scalar data values. We inject faults into the objects
at runtime. Others have used runtime fault injection, for ex-
ample, Voas uses fault injection to measure testability [12].

Injected faults must represent plausible errors. Unlike
hardware, where a combination of simple faults can be used

to model any real fault, software fault models are hard to de-
velop. Mutation of scalar values is straightforward, because
their semantics are well understood. For example, we can
add one to an integer value. Mutating objects that are in-
stances of user defined types is more difficult. There is no
obvious way to modify such objects in a manner consistent
with realistic faults, without writing custom mutation meth-
ods for each object class. Our approach is to inject faults into
objects that instantiate items from common Java libraries.

We address the following issues in the paper:

1. Derivation of mutation operators for Java: Prior work
defines operators to mutate statements, operators, con-
stants and variables for FORTRAN [11], C [1, 2, 3],
Ada [10] and Java [6]. We describe mutation faults that
can be injected into Java objects.

2. Generation of mutants by applying the operators to
programs: Prior work focuses on compile-time or
static mutation [9]. We show how to generate Java pro-
gram mutants during program execution.

2. Mutation Operators for Java

Mutation operators defined for procedural languages are
also applicable to Java. Java includes additional features
related to the object-oriented paradigm. Offutt et al. de-
fined mutation operators for Ada [10]; these operators ad-
dress some object-oriented features; they do not address in-
heritance and are limited to properties within a class.

Kim et al [6] propose mutation operators for Java based
on deviations of Java language constructs. The mutation op-
erators do not take object semantics into account. Several
operators create mutants that do not compile.

Objects have state and methods implement transitions
from one state to another. Doong and Frankl’s [4] AS-
TOOT uses algebraic specifications to generate method test
sequences. Kirani and Tsai [7] describe a method sequence
testing method: testers select sequences of methods in vary-
ing orders and length. Kung et al. [8] describe testing based



on state transition diagrams. Mutation operators that are ap-
plied to program code are not sufficient to ensure that objects
will go through different states.

Interface mutation identifies errors that programmers
may make in defining, implementing and using interfaces.
Integration mutation operators test the connections between
two modules by mutating module interfaces [3].

Ghosh and Mathur [5] use interface mutation on dis-
tributed object systems that use CORBA, DCOM and Java-
RMI. Interface mutation operators change parameter values
in method calls defined in an interface.

The above mutation operators can be easily applied when
the parameters are scalars. A simple object mutation is to
make an object reference null. A more plausible approach
is to modify the state of an object. State mutation operators
cannot be applied statically to a program, because the state
of the object depends on program execution. Interface muta-
tion operators will not reveal state errors caused by specific
method sequences. These errors depend on the order of op-
eration and not the values of the arguments.

3. Mutation Faults for Java Objects

Instead of defining mutation operators for each class in
the Java API, we define operators that apply to a whole
group of classes that implement a certain interface. We ex-
amine mutation operators that apply to the following inter-
faces:

� Container types defined in the interfaces, Collection
and List in the package java.util.

� Iterators defined in the interface Iterator in the package
java.util.

� InputStream defined in the abstract class InputStream
in the package java.io.

We also define default mutation operators.

1. class C {
2. ...
3. public void m (Foo f) {
4. ...
5. ...
6. }
7. ...
8. }

Figure 1. Code of Class C

Injecting The Faults. Figure 1 shows a class C containing
a method m() with parameter f which references an object
of type Foo. Code inside m (not shown) uses the parame-
ter f for computation. We can mutate the object bound to f

before it is used by inserting, just after line 3, the following
statement:

f = (Foo) ObjectMutationEngine.mutate(f);

We can also mutate an object returned by a method, as
shown in Figure 2, placing the mutate call just prior to the
return statement. The ObjectMutationEngine implements
the mutate methods. Inserting calls to the ObjectMutatio-
nEngine is relatively easy using a code instrumenter that
builds a parse tree and inserts calls to mutate into certain
nodes in the tree. The ObjectMutationEngine is described
in Section 4.

1. class C {
2. ...
3. public Bar m (Foo f) {
4. ...
5. Bar b;
6. ...
7. return b;
8. }
9. ...
10. }

Figure 2. Mutation of Return Statement

3.1. Default mutation operators

Mutating an instance of an arbitrary user-defined type
modifies the fields of the object. The Java reflection API en-
ables us to identify the types of objects. If the field is a scalar,
we apply traditional scalar mutation operators:

1. Increment the value by 1
2. Decrement the value by 1
3. Set the value to a constant

Our new mutation operators apply to fields that are ob-
jects. If the semantics of the objects are known, it is easier
to select the operators. Default operators apply when the se-
mantics are not known. A default operator might make an
object reference null. Such a mutation will probably raise a
NullPointerException, limiting its utility. Moreover this is
an operation that is applied to the reference, not the object.
This mutation treats a variable that refers to an object as hav-
ing an underlying type of “reference to object” and takes ad-
vantage of knowledge of the semantics of variables of this
sort. It can only mutate an object reference by assigning it a
value, testing for equality between two such variables, and
dereferencing its value.

Another mutation operator for arbitrary object types is
one that recursively applies mutation operators to the nested
fields until the scalar fields are reached. The following op-
erators can also be applied:

2



1. Cloning the object referred to by the variable and as-
signing the reference to the clone to the variable. This
tests the sensitivity of a program to the object’s identity
rather than its state.

2. Creating a new object whose type is compatible with
the declared type T of the object reference — we in-
stantiate a new object whose type is a descendant of T .

3.2. Mutation operators for containers

Operators for the Collection Interface.

1. Make the Collection empty:

In Java every Collection needs to implement the
method clear(). The mutate method for making the
Collection empty just invokes the clear() method on
this object.

2. Remove an element from the Collection:

The element to be removed from the Collection could
be the first, last or some random element. Every Col-
lection provides a remove() method that takes an object
as a parameter. We can index the array of objects re-
turned by the Collection.toArray() method to select any
object to be removed.

3. Add an element to the Collection:

We can add some arbitrary element to the Collection
using the add() method provided in any Collection.
This element can be a clone of some existing element,
or it can be generated by the element constructor that
takes no parameters or the default constructor of the el-
ement.

4. Mutate the elements:

For every element inside the Collection, the mutate
method for the element’s type can be invoked.

5. Reorderm of then elements in the Collection: Since
there is no notion of order embodied in a Collection,
and there it no method provided in the API that can ma-
nipulate the order, we cannot apply the r

¯
eorder opera-

tor to the Collection interface directly. We can still use
the method toArray() to obtain an array of the objects,
reorder the array and create a new Collection from the
objects in the array.

Operators for the List interface. The mutation operators
defined for the Collection interface also apply to the List in-
terface. The Collections class provides a number of static
methods, such as shuffle(List list) and shuffle(List list, Ran-
dom rnd) that can be used to reorder the elements in the List.

Operators for container implementations. The specific
semantics of implementations can be used to mutate con-
tainer objects. For example, a binary tree has a notion of
ordering. This notion can be used to implement a reorder
mutation operator.

3.3. Operator for the Iterator interface

The Iterator interface in the Java API generates the next
element in the iteration using the method next(). A skip op-
erator makes the iterator skip elements. It is implemented
by a mutate method that calls the next() method one or more
times.

The skip operator does not affect all instances of the mu-
tated type but just the instance held by some client. Since
we are only mutating one iterator and not the original con-
tainer, any other client using the container or a different it-
erator over the container will not see a difference.

3.4. Mutation operator for inputstreams

The InputStream abstract class in the Java API provides
a method called skip(long n) which skips over and discards
n bytes of data from this input stream. We define a mutation
operator for inputstreams that results in the skipping of bytes
of data. This mutate method will call the skip() method with
an appropriate length parameter.

4. Architecture of Mutation Engine

We create a special mutator class for each type or fam-
ily of types to be mutated. Each mutator class implements
the Mutator interface, shown in Figure 3, which specifies
one operation, mutate(). Mutators are named as <base
type>Mutator. For an object of type A, its mutator will be
named AMutator.

Figure 3. Object Mutation Engine with 3 Mu-
tators.

3



A preprocessor instruments the code with invocations
of ObjectMutationEngine.mutate() described in Section 3.
The mutate method forwards the mutation request to the ap-
propriate Mutator object. ObjectMutationEngine.mutate()
identifies the actual class of its object parameter and any
interfaces that it implements using the Java reflection API;
then it looks for a match among a collection of registered
Mutator objects. A Mutator object, theMutator, matches an
object to mutate, mutationCandidate, if

1. The base type of theMutator is that of the actual type of
the mutationCandidate (the declared type in the origi-
nal program of the variable that refers to mutationCan-
didate is not known by theMutator),

2. The base type of theMutator is that of an interface im-
plemented by the mutationCandidate, or

3. The base type of theMutator is a parent of the type of
the mutationCandidate.

Figure 3 shows the ObjectMutationEngine and three
classes A, B, and C with the associated mutators AMutator,
BMutator and CMutator. Each Mutator class implements
the mutate method (of interface Mutator) that takes an ob-
ject and returns a mutated object.

The ObjectMutationEngine is the heart of the applica-
tion. It maintains a table of registered mutators (fRegistered-
Mutators). Every Mutator registers with the ObjectMutatio-
nEngine using the register(Mutator) method. The register()
method determines the class name of the Mutator using the
Java reflection API. A mutator may be removed from the ta-
ble using the withdraw() method.

ObjectMutationEngine.mutate(Object) is passed an in-
stance of class A, B, or C as a parameter. The mutate method
determines the appropriate mutator key by appending the
string Mutator to the parameter’s class name, and uses this
key to find the appropriate mutator class from the Regis-
teredMutators table. If there is a match, the mutation request
is forwarded to the matching mutator. Otherwise, the search
continues up the inheritance hierarchy to find the nearest ap-
plicable mutator.

The ObjectMutationEngine has a fairly simple design,
yet it can support a wide variety of mutations. The design
of libraries of Mutator classes that match Java library classes
and interfaces is an ongoing activity.

5. Conclusions and Future Work

Our technique for performing mutation analysis on
object-oriented programs injects faults into objects.
Reusable libraries of mutation components can inject plau-
sible faults into objects that instantiate items from common
Java libraries. Since Java library items are heavily used in
commercial software, the technique should be effective for
evaluating the real-world software testing suites. An object

mutation engine implements the technique. We are now
testing the effectiveness of this technique.

Currently, each mutator class has one mutate method.
After we define additonal mutation operators, the mutator
classes will have multiple mutate methods.

The design of the ObjectMutationEngine is very flexible.
It can inject a wide variety of mutations into running pro-
grams, and can be extended to support new fault models.

References

[1] H. Agrawal, R. DeMillo, R. Hathaway, W. M. Hsu, W. Hsu,
E. Krauser, R. J. Martin, A. Mathur, and E. Spafford. De-
sign of Mutant Operators for the C Programming Language.
Technical Report SERC-TR-41-P, Software Engineering Re-
search Center, Purdue Univ., 1989.

[2] M. E. Delamaro, J. C. Maldonado, M. Jino, and M. L. Chaim.
mutantes PROTEUM: A test tool based on mutation analy-
sis. In Software Tools Proc. VII Brazilian Symp. on Software
Engineering, 1993.

[3] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Inte-
gration Testing Using Interface Mutation. Proc. ISSRE ’96,
pp. 112–121, 1996.

[4] R.-K. Doong and P. G. Frankl. The ASTOOT Approach to
Testing Object-Oriented Programs. ACM Trans. Software
Engineering and Methodology, 3(2):101–130, April 1994.

[5] S. Ghosh and A. P. Mathur. “Interface Mutation”. Proc. of
MUTATION 2000, pp. 112–123, 2000.

[6] S. Kim, J. A. Clark, and J. A. McDermid. “Class Muta-
tion: Mutation Testing for Object Oriented Programs”. Proc.
FMES, 2000.

[7] S. Kirani and W. T. Tsai. “Method Sequence Specification
and Verification of Classes”. Object-Oriented Programming,
pp 28–38, 1994.

[8] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen.
“Change Impact Identification in Object Oriented Software
Maintenance”. Proc. IEEE Int. Conf. Software Maintenance,
pp. 202–211, 1994.

[9] A. P. Mathur. Encyclopedia of Software Engineering, J.
Marciniak, Editor, chapter Mutation Testing, pp. 707–713.
Wiley Interscience, 1994.

[10] A. J. Offutt, J. Voas, and J. Payne. Mutation Operators for
Ada. Technical Report ISSE-TR-96-09, Information & Soft-
ware Systems Engineering, George Mason Univ., 1996.

[11] R. A. DeMillo et al. An Extended Overview of the
MOTHRA Testing Environment. Proc. Workshop of Soft-
ware Testing, Verification and Analysis, 1988.

[12] J. M. Voas. PIE: A Dynamic Failure-based Technique. IEEE
Trans. Software Engineering, 18(8):717–727, 1992.

4


