Inference Rules
(Rosen, Section 1.5)

TOPICS

• Logic Proofs
 ◦ via Truth Tables
 ◦ via Inference Rules

Propositional Logic Proofs

• An argument is a sequence of propositions:
 ◦ Premises (Axioms) are the first n propositions
 ◦ Conclusion is the final proposition.
• An argument is valid if \((p_1 \land p_2 \land \ldots \land p_n) \rightarrow q\) is a tautology, given that \(p_j\) are the premises (axioms) and \(q\) is the conclusion.
Proof Method #1: Truth Table

- If the conclusion is true in the truth table whenever the premises are true, it is proved
 - Warning: when the premises are false, the conclusion may be true or false
- Problem: given n propositions, the truth table has 2^n rows
 - Proof by truth table quickly becomes infeasible

Example Proof by Truth Table

\[s = ((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r) \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>\neg p</th>
<th>p \lor q</th>
<th>\neg p \lor r</th>
<th>q \lor r</th>
<th>(p \lor q) \land (\neg p \lor r)</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof Method #2: Rules of Inference

- A rule of inference is a pre-proved relation: any time the left hand side (LHS) is true, the right hand side (RHS) is also true.

- Therefore, if we can match a premise to the LHS (by substituting propositions), we can assert the (substituted) RHS

Inference properties

- Inference rules are truth preserving
 - If the LHS is true, so is the RHS

- Applied to true statements
 - Axioms or statements proved from axioms

- Inference is syntactic
 - Substitute propositions
 - if p replaces q once, it replaces q everywhere
 - If p replaces q, it only replaces q

 - Apply rule
Example Rule of Inference

Modus Ponens

\[(p \land (p \rightarrow q)) \rightarrow q \]

\[p \rightarrow q \]

\[\therefore q \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
<th>(p \land (p \rightarrow q))</th>
<th>((p \land (p \rightarrow q)) \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Rules of Inference

<table>
<thead>
<tr>
<th>Rules of Inference</th>
<th>Modus Tollens</th>
<th>Hypothetical Syllogism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus Ponens</td>
<td>Modus Tollens</td>
<td>Hypothetical Syllogism</td>
</tr>
<tr>
<td>(p)</td>
<td>(\neg q)</td>
<td>(p \rightarrow q)</td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td>(p \rightarrow q)</td>
<td>(q \rightarrow r)</td>
</tr>
<tr>
<td>(q)</td>
<td>(\neg p)</td>
<td>(p \rightarrow r)</td>
</tr>
<tr>
<td>Addition</td>
<td>Resolution</td>
<td>Disjunctive Syllogism</td>
</tr>
<tr>
<td>(p)</td>
<td>(p \lor q)</td>
<td>(p \lor q)</td>
</tr>
<tr>
<td>(p \lor q)</td>
<td>(\neg p \lor r)</td>
<td>(\neg p)</td>
</tr>
<tr>
<td></td>
<td>(q \lor r)</td>
<td>(q)</td>
</tr>
<tr>
<td>Simplification</td>
<td>Conjunction</td>
<td></td>
</tr>
<tr>
<td>(p \land q)</td>
<td>(p)</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>(q)</td>
<td></td>
</tr>
<tr>
<td>(p \land q)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical Equivalences

Idempotent Laws
- \(p \lor p \equiv p \)
- \(p \land p \equiv p \)

DeMorgan's Laws
- \(\neg(p \land q) \equiv \neg p \lor \neg q \)
- \(\neg(p \lor q) \equiv \neg p \land \neg q \)

Distributive Laws
- \(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \)
- \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \)

Double Negation
- \(\neg(\neg p) \equiv p \)

Absorption Laws
- \(p \lor (p \land q) \equiv p \)
- \(p \land (p \lor q) \equiv p \)

Commutative Laws
- \(p \lor q \equiv q \lor p \)
- \(p \land q \equiv q \land p \)

Implication Laws
- \(p \rightarrow q \equiv \neg p \lor q \)
- \(p \rightarrow q \equiv \neg q \rightarrow \neg p \)

Associative Laws
- \((p \lor q) \lor r \equiv p \lor (q \lor r) \)
- \((p \land q) \land r \equiv p \land (q \land r) \)

Biconditional Laws
- \(p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \)
- \(p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p \)

Modus Ponens

- If \(p \), and \(p \) implies \(q \), then \(q \)

Example:
- \(p = \) it is sunny, \(q = \) it is hot
- \(p \rightarrow q \), it is hot whenever it is sunny

“Given the above, if it is sunny, it must be hot”.
Modus Tollens

- If not q and p implies q, then not p

Example:

\[p = \text{it is sunny}, \quad q = \text{it is hot} \]

\[p \rightarrow q, \quad \text{it is hot whenever it is sunny} \]

“Given the above, if it is not hot, it cannot be sunny.”

Hypothetical Syllogism

- If p implies q, and q implies r, then p implies r

Example:

\[p = \text{it is sunny}, \quad q = \text{it is hot}, \quad r = \text{it is dry} \]

\[p \rightarrow q, \quad \text{it is hot when it is sunny} \]

\[q \rightarrow r, \quad \text{it is dry when it is hot} \]

“Given the above, it must be dry when it is sunny”
Disjunctive Syllogism
- If \(p \) or \(q \), and not \(p \), then \(q \)

Example:
\(p = \text{it is sunny}, \ q = \text{it is hot} \)
\(p \lor q, \text{it is hot or sunny} \)
“Given the above, if it not sunny, but it is hot or sunny, then it is hot”

Resolution
- If \(p \) or \(q \), and not \(p \) or \(r \), then \(q \) or \(r \)

Example:
\(p = \text{it is sunny}, \ q = \text{it is hot}, \ r = \text{it is dry} \)
\(p \lor q, \text{it is sunny or hot} \)
\(\neg p \lor r, \text{it is not hot or dry} \)
“Given the above, if it is sunny or hot, but not sunny or dry, it must be hot or dry”

Not obvious!
Addition

- If p then p or q

Example:

\(p = \text{it is sunny}, \ q = \text{it is hot} \)

\(p \lor q, \text{it is hot or sunny} \)

“Given the above, if it is sunny, it must be hot or sunny”

Of course!

Simplification

- If p and q, then p

Example:

\(p = \text{it is sunny}, \ q = \text{it is hot} \)

\(p \land q, \text{it is hot and sunny} \)

“Given the above, if it is hot and sunny, it must be hot”

Of course!
Conjunction

- If p and q, then p and q

Example:
- p = it is sunny, q = it is hot
- p ∧ q, it is hot and sunny
- “Given the above, if it is sunny and it is hot, it must be hot and sunny”
- Of course!

A Simple Proof

Given X, X → Y, Y → Z, ¬ Z ∨ W, prove W

<table>
<thead>
<tr>
<th>Step</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>x → y</td>
</tr>
<tr>
<td>2.</td>
<td>y → z</td>
</tr>
<tr>
<td>3.</td>
<td>x → z</td>
</tr>
<tr>
<td>4.</td>
<td>x</td>
</tr>
<tr>
<td>5.</td>
<td>z</td>
</tr>
<tr>
<td>6.</td>
<td>¬ z ∨ W</td>
</tr>
<tr>
<td>7.</td>
<td>W</td>
</tr>
</tbody>
</table>
A Simple Proof

“In order to sign up for CS161, I must complete CS160 and either M155 or M160. I have not completed M155 but I have completed CS161. Prove that I have completed M160.”

STEP 1) Assign propositions to each statement.
- A : CS161
- B : CS160
- C : M155
- D : M160

Setup the proof

STEP 2) Extract axioms and conclusion.
- Axioms:
 - $A \rightarrow B \land (C \lor D)$
 - A
 - $\neg C$
- Conclusion:
 - D
Now do the Proof

STEP 3) Use inference rules to prove conclusion.

<table>
<thead>
<tr>
<th>Step</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Premise</td>
</tr>
<tr>
<td>2.</td>
<td>Premise</td>
</tr>
<tr>
<td>3.</td>
<td>Modus Ponens (1, 2)</td>
</tr>
<tr>
<td>4.</td>
<td>Simplification</td>
</tr>
<tr>
<td>5.</td>
<td>Premise</td>
</tr>
<tr>
<td>6.</td>
<td>Disjunctive Syllogism (4, 5)</td>
</tr>
</tbody>
</table>

Another Example

Given:
\[p \rightarrow q \]
\[\neg p \rightarrow r \]
\[r \rightarrow s \]

Conclude:
\[\neg q \rightarrow s \]
Proof of Another Example

<table>
<thead>
<tr>
<th>Step</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(p \rightarrow q) Premise</td>
</tr>
<tr>
<td>2.</td>
<td>(\neg q \rightarrow \neg p) Implication law (1)</td>
</tr>
<tr>
<td>3.</td>
<td>(\neg p \rightarrow r) Premise</td>
</tr>
<tr>
<td>4.</td>
<td>(\neg q \rightarrow r) Hypothetical syllogism (2, 3)</td>
</tr>
<tr>
<td>5.</td>
<td>(r \rightarrow s) Premise</td>
</tr>
<tr>
<td>6.</td>
<td>(\neg q \rightarrow s) Hypothetical syllogism (4, 5)</td>
</tr>
</tbody>
</table>

Proof using Rules of Inference and Logical Equivalences

Prove: \(\neg(p \lor (\neg p \land q)) \equiv (\neg p \land \neg q) \)

\[
\begin{align*}
\neg (p \lor (\neg p \land q)) & \equiv \neg p \land \neg (\neg p \lor q) & & \text{By 2nd DeMorgan's} \\
& \equiv \neg p \land (\neg (\neg p) \lor \neg q) & & \text{By 1st DeMorgan's} \\
& \equiv \neg p \land (p \lor \neg q) & & \text{By double negation} \\
& \equiv (\neg p \land p) \lor (\neg p \land \neg q) & & \text{By double distributive} \\
& \equiv F \lor (\neg p \land \neg q) & & \text{By definition of \(\land \)} \\
& \equiv (\neg p \land \neg q) \lor F & & \text{By commutative law} \\
& \equiv (\neg p \land \neg q) & & \text{By definition of \(\lor \)}
\end{align*}
\]
Example of a Fallacy

\[
q \\
\therefore p
\]

\[
(q \land (p \rightarrow q)) \rightarrow p \\
p \rightarrow q
\]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p → q</th>
<th>q ∧ (p → q)</th>
<th>(q ∧ (p → q)) → p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This is not a tautology, therefore the argument is not valid.

Example of a Fallacy

- If q, and p implies q, then p

Example:

p = it is sunny, q = it is hot

p → q, if it is sunny, then it is hot

“Given the above, just because it is hot, does NOT necessarily mean it is sunny.