

Why?

Object Oriented
Programming:

Today’s Goals:

● Introduce OOP philosophy
● Explain why OOP is useful
● Show OOP in action
● Explain OOP terminology

Review

● Classes are blueprints for data and
methods that act on that data.
– Think architectural designs for a house.

● Objects are instantiations of classes
– Think the house they build from the designs

● Methods and Data are wrapped inside the
class and their instantiations

What is an Class, Really?

Two layers:
● Interface

– Visible
– Gives us external behaviors to rely on.

● Pre-/Post-conditions

● Implementation
– Hidden
– Produces the behavior specified by the

interface

Whats the Difference?

● An interface is a list of methods, their
behaviors and conditions
– Describes

● An implementation is code, or pseudo-
code, that performs specified behavior
– Does

Whats the Difference?

Interface for String:
● int length()

– Returns number of characters in the string
● char charAt(int index)

– Pre-condition: index < length()
– Returns the char at index

● int indexOf(char ch)
– Returns the index of the character ch in

the string, -1 if not found
● Etc.

What’s the Difference?

Possible Implementation for String:
char[] charString;

public int length(){
 return charString.length;
}

public char charAt(int index){
 if(index >= this.length()) throw new Exception(index + “ is out of bounds”);
 return this.charString[index];
}

public int indexOf(char ch){
 for(int i = 0; i < this.length(); ++i){
 if(this.charAt(i) == ch) return i;
 }
 return -1;
}
// etc.

Abstraction & Encapsulation

These layers create:
● Abstraction

– Creating a higher level view of an idea

– The interface

● Encapsulation
– Binding data and implementation within one

thing

– The implementation

Enough with the Vocabulary

Cool, Abstraction, Encapsulation, so what?
● Abstraction allows us to use other classes

without worrying how they work.
– The interface tells us what they do.

● Encapsulation allows us to write classes
that perform tasks:

a) without having to divulge how it works

b) making the task appear simpler to the outside

Which does...?

● Ultimately, when using an object we only
care about what the object does, rather
than how the object does it.

● This makes code:
– Reusable

– Easy to modify

– Simple to use, despite its internal complexity

Abstraction and Interfaces

Even with abstraction, there may be
implementation details to consider:
● Speed
● Memory consumption

But an interface allows for multiple
implementations.

Additionally, an interface is now a type, can
we can instantiate objects of that type

Interface Syntax in Java

Describes the methods that a class will
implement:
public interface IntegerList { // our interface
 public int remove(); // Defines that there is this method signature
 public int size();
 public void add(int element);
 // ...etc
}

public class IntegerArrayList implements IntegerList {
 public int remove(){ // implements this method
 // remove() method implementation code
 }
 // …etc
}

Summary

● Classes and Objects are powerful
constructs that allow for simplification of
data-structures, increasing their usability
and rebuildability by abstraction and
encapsulation.

● Interfaces allow us to be unconcerned with
implementation details when using a class;
and alternatively, not be concerned with
the use of the class when performing the
implementation.

	Title
	Goals
	Slide 3
	Philosophy
	Slide 5
	Slide 6
	Whats the Difference_2
	Abstraction & Encapsulation
	Enough w/ the vocab
	Slide 10
	Slide 11
	Slide 12
	Slide 13

