

Discrete Math Review (Rosen, Chapter 1.1 – 1.6)

TOPICS

- Propositional and Predicate Logic
- Logical Operators and Truth Tables
- Logical Equivalences and Inference Rules
- Proof Techniques
- Program Correctness

Discrete Math Review

- What you should know about propositional and predicate logic before the next midterm!
- Less theory, more problem solving, will be repeated in recitation and homework.

CS160 - Fall Semester 2013

2

Propositional Logic

- A proposition is a statement that is either true or false
- Examples:
 - Fort Collins is in Nebraska (false)
 - Java is case sensitive (true)
 - We are not alone in the universe (?)
- Every proposition is true or false, but its truth value may be unknown

CS160 - Fall Semester 2013

Logical Operators

- ¬ logical not (negation)
- v logical or (disjunction)
- ^ logical and (conjunction)
- ⊕ logical exclusive or
- → logical implication (conditional)
- ↔ logical bi-implication (biconditional)

CS160 - Fall Semester 2013

Truth Tables

p	q	рла
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

• (1) You should be able to write out the truth table for all logical operators, from memory.

CS160 - Fall Semester 2013

Compound Propositions

- Propositions and operators can be combined into compound propositions.
- (2) You should be able to make a truth table for any compound proposition:

p	q	¬p	$p \rightarrow q$	¬р л (р→q)
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

CS160 - Fall Semester 2013

c

English to Propositional Logic

- (3) You should be able to translate natural language to logic (can be ambiguous!):
- English:

"If the car is out of gas, then it will stop"

- Logic:
 - p equals "the car is out of gas" q equals "the car will stop"

 $p \rightarrow q$

CS160 - Fall Semester 2013

Propositional Logic to English

- (4) You should be able to translate propositional logic to natural language:
- Logic:

p equals "it is raining" q equals "the grass will be wet" $p \rightarrow q$

English:

"If it is raining, the grass will be wet."

CS160 - Fall Semester 2013

.

Logical Equivalences: Definition

- Certain propositions are equivalent (meaning) they share exactly the same truth values):
- For example:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$(p \land T) \equiv p$$

 $(p \land \neg p) \equiv F$

De Morgan's **Identity Law Negation Law**

CS160 - Fall Semester 2013

Logical Equivalences: Truth Tables

- (5) And you should know how to prove logical equivalence with a truth table
- For example: $\neg(p \land q) = \neg p \lor \neg q$

р	q	¬р	¬q	(p ∧ q)	¬(p ∧ q)	¬p v ¬q
Т	Т	F	F	Т	F	F
Τ	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

CS160 - Fall Semester 2013

Logical Equivalences: Review

- (6) You should understand the logical equivalences and laws on the course web site.
- You should be able to prove any of them using a truth table that compares the truth values of both sides of the equivalence.
- Memorization of the logical equivalences is not required in this class.

CS160 - Fall Semester 2013

Logical Equivalences (Rosen)

Logical Equivalences

Idempotent Laws DeMorgan's Laws $p \vee p \equiv p$ $p \wedge p \equiv p$

Distributive Laws $\neg (p \land q) \equiv \neg p \lor \neg q \quad p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $\neg(p \lor q) \equiv \neg p \land \neg q \quad p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Double Negation $\neg(\neg p) \equiv p$

Absorption Laws $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Associative Laws $(p \vee q) \vee r \equiv p \vee (q \vee r)$ $(p \land q) \land r \equiv p \land (q \land r)$

Commutative Laws Implication Laws $p \vee q \equiv q \vee p$ $p \wedge q \equiv q \wedge p$

 $p \rightarrow q \equiv \neg p \lor q$ $p \to q \equiv \neg q \to \neg p$ **Biconditional Laws** $p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

 $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

CS160 - Fall Semester 2013

Transformation via Logical Equivalences

(7) You should be able to transform propositions using logical equivalences.

Prove:
$$\neg p \lor (p \land q) \equiv \neg (p \land \neg q)$$

$$\neg p \lor (p \land q) \equiv (\neg p \lor p) \land (\neg p \lor q) \qquad \begin{array}{c} \bullet \quad \text{Distributive law} \\ \equiv \quad T \land (\neg p \lor q) \quad \bullet \quad \text{Negation law} \\ \equiv \quad (\neg p \lor q) \quad \bullet \quad \text{Domination law} \end{array}$$

 $\equiv \neg (p \land \neg q)$ • De Morgan's Law

CS160 - Fall Semester 2013

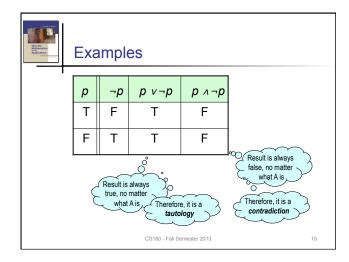
Semester 2013

Vocabulary

- (8) You should memorize the following vocabulary:
 - A tautology is a compound proposition that is always true.
 - A contradiction is a compound proposition that is always false.
 - A contingency is neither a tautology nor a contradiction.
- And know how to decide the category for a compound proposition.

CS160 - Fall Semester 2013

4.0



Logical Proof

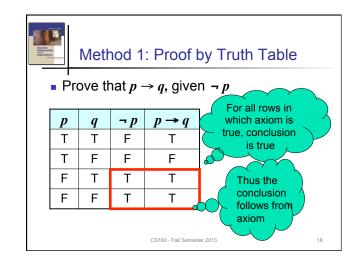
- Given a set of axioms
 - Statements asserted to be true
- Prove a conclusion
 - Another propositional statement
- In other words:
 - Show that the conclusion is true ...
 - ... whenever the axioms are true

CS160 - Fall Semester 2013

Logical Proof

- (9) You should be able to perform a logical proof via truth tables.
- (10) You should be able to perform a logical proof via inference rules.
- Both methods are described in the following slides.

CS160 - Fall Semester 2013



Method 2: Proof using Rules of Inference

- A rule of inference is a proven relation: when the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match an axiom to the LHS by substituting propositions, we can assert the (substituted) RHS

CS160 - Fall Semester 2013

Applying rules of inference

- Example rule: p, p→q ∴ q
 - Read as "p and $p\rightarrow q$, therefore q"
 - This rule has a name: modus ponens
- If you have axioms r, r→s
 - Substitute *r* for *p*, *s* for *q*
 - Apply modus ponens
 - Conclude s

CS160 - Fall Semester 2013

Modus Ponens

be hot".

If p, and p implies q, then q
 Example:
 p = it is sunny, q = it is hot
 p → q, it is hot whenever it is sunny
 "Given the above, if it is sunny, it must

CS160 - Fall Semester 2013

21

Modus Tollens

If not q and p implies q, then not p Example:

p = it is sunny, q = it is hot p \rightarrow q, it is hot whenever it is sunny "Given the above, if it is not hot, it cannot be sunny."

CS160 - Fall Semester 2013

22

Rules of Inference (Rosen)

Rules of Inference

Modus Ponens

 $\frac{p \to q}{q}$

 $\frac{\neg q}{p \to q}$

Modus Tollens

Hypothetical Syllogism

 $\frac{p \to q}{q \to r}$ $\frac{q \to r}{p \to r}$

Addition

Resolution $p \lor q$ $p \lor r$

Disjunctive Syllogism

p ∨ q ¬*p*

Simplification

 $\frac{p \wedge q}{p}$

 $\frac{r}{p \vee q}$

Conjunction p

 $\overline{q \vee r}$

 $p \wedge q$

CS160 - Fall Semester 2013

23

A Simple Proof: Problem Statement

Example of a complete proof using inference rules, from English to propositional logic and back:

- If you don't go to the store, then you cannot not cook dinner. (axiom)
- If you cannot cook dinner or go out, you will be hungry tonight. (axiom)
- You are not hungry tonight, and you didn't go to the store. (axiom)
- You must have gone out to dinner. (conclusion)

CS160 - Fall Semester 2013

A Simple Proof: Logic Translation

- p: you go to the store
- q: you can cook dinner
- r: you will go out
- s: you will be hungry
- AXIOMS: $\neg p \rightarrow \neg q$, $\neg (q \lor r) \rightarrow s$, $\neg s$, $\neg p$
- CONCLUSION: r

CS160 - Fall Semester 2013

A Simple Proof: Applying Inference

- 1. $\neg p \rightarrow \neg q$ Axiom2. $\neg (q \lor r) \rightarrow s$ Axiom3. $\neg s$ Axiom4. $\neg p$ Axiom
- 5. ¬q Modus Ponens (1, 4)6. q v r Modus Tollens (2, 3)

7. r Disjunctive Syllogism (5, 6) CONCLUSION: You must have gone out to dinner!

CS160 - Fall Semester 2013

Predicate Logic

- (11) You should recognize predicate logic symbols, i.e. quantifications.
- Quantification express the extent to which a predicate is true over a set of elements:
 - Universal ∀, "for all"
 - Existential 3, "there exists"
- (12) You should able to translate between predicate logic and English, in both directions.

CS160 - Fall Semester 2013

Predicate Logic (cont'd)

- Specifies a proposition (and optionally a domain), for example:
 - $\exists x \in N$, -10 < x < -5 // False, since no negative x
 - $\forall x \in N, x > -1$ // True, since no negative x
- (13) Must be able to find examples
 - to prove \exists , e.g. \exists x \in Z, -1 < x < 1, x = 0
- (14) Must be able to find counterexamples
 - to disprove \forall , e.g. \forall x \in Z, x > -1, x = -2

CS160 - Fall Semester 2013

Direct Proof (15): Show that 5x + 3y is even when **x** and **y** are odd integers.

	Step	Reason
1.	$O(x) \ \ \ifmmode \ \ifmmo$	Hypothesis
2.	$O(x) \rightarrow x = 2j+1, O(y) \rightarrow y = 2k+1$	Odd Definition
3.	E(5(2j + 1) + 3(2k + 1))	Substitution
4.	E(10j + 5 + 6k + 3)	Algebra
5.	E(2(5j + 3k + 4)) = true	Even Definition
6.	∴ E(5x + 3y) = true	Proves hypothesis

CS160 - Fall Semester 2013

Contrapositive Proof (16): Show that when 5xy is even, then x or y is even

	Step	Reason	
1.	$E(5xy) \to E(x) \ \ \ \ \ E(y)$	Hypothesis	
2.	$\neg(E(x) \ \bigvee E(y)) \to \negE(5xy)$	Contrapositive	
3.	$O(x) \land O(y) \rightarrow O(5xy)$	De Morgan's	
4.	$O(x) \rightarrow x = 2j+1, O(y) \rightarrow y = 2k+1$	Odd Definition	
5.	O(5(2j + 1)(2k + 1))	Substitution	
6.	O(20jk + 10j + 10k + 5)	Algebra	
7.	O(2(10jk + 5j + 5k + 2) + 1) = true	Odd Definition	
8.	∴O(5xy) = true	Proves Contrapositive	
CS160 - Fall Semester 2013			30

Contradiction Proof (17): Show that when 5xy is even, then x or y is even

	Step	Reason
1.	$E(5xy) \rightarrow E(x) \ V \ E(y)$	Hypothesis
2.	E(5xy) ∧ ¬(E(x) V E(y))	Contradiction
3.	E(5xy) ∧ O(x) ∧ O(y))	De Morgan's
4.	$O(x) \rightarrow x = 2j+1, O(y) \rightarrow y = 2k+1$	Odd Definition
5.	E(5(2j + 1)(2k + 1))	Substitution
6.	E(20jk + 10j + 10k + 5)	Algebra
7.	E(2(10jk + 5j + 5k + 2) + 1) = false	Odd Definition!
8.	∴ E(5xy) = false	Disproves Contradiction
	CS160 - Fall Semester:	2013 31

CS160 - Fall Semester 2013

Proof by Cases (18): Given two real numbers x and y, |xy| = |x||y|

Case 1: $x \ge 0$, $y \ge 0$, $xy \ge 0$ so |xy| = xyand |x|=x and |y|=y so |x||y|=xyCase 2: x<0, y>=0, xy<0 so |xy|=-xyand |x|=-x and |y|=y so |x||y|=-xyCase 3: $x \ge 0$, y < 0, xy < 0 so |xy| = -xyand |x|=x and |y|=-y so |x||y|=-xy

Case 4: x<0, y<0, xy>=0 so |xy|=xyand |x|=-x and |y|=-y so |x||y|=xy

CS160 - Fall Semester 2013

Pre and Post Conditions (19)

```
public static int foo(int x) {

// Precondition: -4 <= x <= 3

return (x * x + 2 * x - 5);

// Postcondition -6 <= return value <= 10

}

f(-4) = 3, f(-3) = -2, f(-2) = -5, f(-1) = -6

f(0) = -5, f(1) = -2, f(2) = 3, f(3) = 10
```

CS160 - Fall Semester 2013

33

Pre and Post Conditions (20)

```
public static int foo(int x) {

// Precondition: -4 <= x <= 2

return (x * x + 2 * x - 5);

// Postcondition -6 <= return <= 3

}

f(-5) = 10, f(-4) = 3, f(-3) = -2, f(-2) = -5,

f(-1) = -6, f(0) = -5, f(1) = -2, f(2) = 3, f(3) = 10
```

CS160 - Fall Semester 2013

34

Significant Market Mark

Loop Invariants (21)

```
int x = 1, y = 2, z = -5;
while (x <= 5) {
    z += y;
    x++;
}
// Loop invariants
y = 2, 1 <= x <= 6, -5 <= z <= 5</pre>
```

CS160 - Fall Semester 2013