
11/4/13	

1	

File Input and Output
(Savitch, Chapter 10)

TOPICS

•  File Input
•  Exception Handling
•  File Output

File class in Java

n  Programmers refer to input/output as "I/O".
n  The File class represents files as objects.
n  The class is defined in the java.io package.
n  Creating a File object allows you to get information

about a file on the disk.
n  Creating a File object does NOT create a new file on

your disk.
 File f = new File("example.txt");
 if (f.exists() && f.length() > 1000) {
 f.delete();
 }

CS 160 - Fall Semester 2013 2

Files

n  Some methods in the File class:

Method name Description
canRead() returns whether file can be

read
delete() removes file from disk
exists() whether this file exists on disk
getName() returns name of file
length() returns number of characters

in file
renameTo(filename) changes name of file

CS 160 - Fall Semester 2013 3

Scanner reminder

n  The Scanner class reads input and processes strings
and numbers from the user.

n  When constructor is called with System.in, the character
stream is input typed to the console.

n  Instantiate Scanner by passing the input character
stream to the constructor:!
!Scanner scan = new Scanner(System.in);!

CS 160 - Fall Semester 2013 4

11/4/13	

2	

Scanner reminder

n  Common methods called on Scanner:
q  Read a line
 String str = scan.nextLine();!

q  Read a string (separated by whitespace)
!String str = scan.next();!

q  Read an integer
!int ival = scan.nextInt();!

q  Read a double
!double dval = scan.nextDouble();  
!

CS 160 - Fall Semester 2013 5

Opening a file for reading

n  To read a file, pass a File object as a parameter when
constructing a Scanner

n  Scanner for a file:
Scanner <name> = new Scanner(new File(<filename>));

n  Example:
Scanner scan= new Scanner(new File("numbers.txt"));

n  or:

File file = new File("numbers.txt");
Scanner scan= new Scanner(file);

String variable
or string literal

CS 160 - Fall Semester 2013 6

File names and paths

n  relative path: does not specify any top-level folder, so
the path is relative to the current directory:
q  "names.dat"
q  "code/Example.java"

n  absolute path: The complete pathname to a file starting
at the root directory /:
q  In Linux: ”/users/cs160/programs/Example.java”
q  In Windows: ”C:/Documents/cs160/programs/data.csv”

CS 160 - Fall Semester 2013 7

File names and paths

n  When you construct a File object with a relative path, Java
assumes it is relative to the current directory.
Scanner scan =

 new Scanner(new File(”data/input.txt”));

q  If our program is in ~/workspace/P4
q  Scanner will look for ~/workspace/P4/data/input.txt

CS 160 - Fall Semester 2013 8

11/4/13	

3	

Compiler error with files

n  Question: Why will the following program NOT compile?
import java.io.*; // for File
import java.util.*; // for Scanner

public class ReadFile {
 public static void main(String[] args) {
 File file = new File(“input.txt”);

 Scanner scan = new Scanner(file);
 String text = scan.next();
 System.out.println(text);
 }
}

n  Answer: Because of Java exception handling!
CS 160 - Fall Semester 2013 9

Compiler error with files

n  Here is the compilation error that is produced:
ReadFile.java:6: unreported exception
java.io.FileNotFoundException;
 must be caught or declared to be thrown

Scanner scan = new Scanner(new File("data.txt"));

n  The problem has to do with error reporting.
n  What to do when a file cannot be opened?
n  File may not exist, or may be protected.
n  Options: exit program, return error, or throw exception
n  Exceptions are the normal error mechanism in Java.

CS 160 - Fall Semester 2013 10

Exceptions

n  exception: An object that represents a program
error.
q  Programs with invalid logic will cause exceptions.
q  Examples:

n  dividing by zero
n  calling charAt on a String with an out of range index
n  trying to read a file that does not exist

q  We say that a logical error results in an exception
being thrown.

q  It is also possible to catch (handle) an exception.

CS 160 - Fall Semester 2013 11

Checked exceptions

n  checked exception: An error that must be
handled by our program (otherwise it will not
compile).
q  We must specify what our program will do to handle

any potential file I/O failures.

q  We must either:
n  declare that our program will handle ("catch") the exception, or
n  state that we choose not to handle the exception

(and we accept that the program will crash if an exception
occurs)

CS 160 - Fall Semester 2013 12

11/4/13	

4	

Throwing Exceptions

n  throws clause: Keywords placed on a method's header
to state that it may generate an exception.

n  It's like a waiver of liability:
q  "I hereby agree that this method might throw an exception, and I

accept the consequences (crashing) if this happens.”
q  General syntax:
public static <type> <name>(<params>) throws <type>
{ … }

q  When doing file open, we throw IOException.
 public static void main(String[] args)
 throws IOException {

CS 160 - Fall Semester 2013 13

Handling Exceptions

n  When doing file I/O, we use IOException.
public static void main(String[] args) {

 try {
 File file = new File(“input.txt);

 Scanner scan = new Scanner(file);
 String firstLine = scan.nextLine();
 ...
 } catch (IOException e) {
 System.out.println(“Unable to open input.txt”);
 System.exit(-1);
 }

}
CS 160 - Fall Semester 2013 14

Fixing the compiler error

n  Throwing an exception or handling the exception both
resolve the compiler error.

n  Throwing Exceptions: User will see program terminate
with exception, that’s not very friendly.

n  Handling Exceptions: User gets a clear indication of
problem with error message, that’s much better.

n  We will handle exceptions when reading and writing files
in programming assignments.

CS 160 - Fall Semester 2013 15

Using Scanner to read file data

n  Consider a file numbers.txt that contains
this text:
308.2
 14.9 7.4 2.8

3.9 4.7 -15.4
 2.8

n  A Scanner views all input as a stream of
characters:
q  308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n

\t2.8\n

CS 160 - Fall Semester 2013 16

11/4/13	

5	

Consuming tokens

n  Each call to next, nextInt, nextDouble, etc.
advances the position of the scanner to the end of the
current token, skipping over any whitespace:

 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

 ^
 scan.nextDouble();
 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

 ^
 scan.nextDouble();

 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n
 ^

CS 160 - Fall Semester 2013 17

First problem

n  Write code that reads the first 5 double
values from a file and prints.

CS 160 - Fall Semester 2013 18

First solution

public static void main(String[] args)
 try {
 File file = new File(“input.txt”);
 Scanner scan = new Scanner(file);

 for (int i = 0; i <= 4; i++) {
 double next = scan.nextDouble();
 System.out.println("number = " + next);
 }
 } catch (IOException e) {
 System.out.println(“Unable to open input.txt”);
 System.exit(-1);
 }

}

CS 160 - Fall Semester 2013 19

Second problem

n  How would we modify the program to read all
the file?

CS 160 - Fall Semester 2013 20

11/4/13	

6	

Second solution

public static void main(String[] args)
 try {

 File file = new File(“input.txt);
 Scanner scan = new Scanner(file);

 while (scan.hasNextDouble()) {
 double next = scan.nextDouble();
 System.out.println("number = " + next);
 }
 } catch (IOException e) {
 System.out.println(“Unable to open input.txt”);
 System.exit(-1);

 }
}

CS 160 - Fall Semester 2013 21

Refining the problem

n  Modify the program again to handle files that
also contain non-numeric tokens.
q  The program should skip any such tokens.

n  For example, it should produce the same
output as before when given this input file:

 308.2 hello
 14.9 7.4 bad stuff 2.8

 3.9 4.7 oops -15.4
 :-) 2.8 @#*($&

CS 160 - Fall Semester 2013 22

Refining the program

while (scan.hasNext()) {

 if (scan.hasNextDouble()) {

 double next = scan.nextDouble();
 System.out.println("number = " + next);

 } else {

 // consume the bad token
 scan.next();

 }
}

CS 160 - Fall Semester 2013 23

Reading input line-by-line

n  Given the following input data:
 23 3.14 John Smith "Hello world"
 45.2 19

n  The Scanner can read it line-by-line:

 23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
 ^

 scan.nextLine()
 23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
 ^

 scan.nextLine()
 23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
 ^

n  The \n character is consumed but not returned.
CS 160 - Fall Semester 2013 24

11/4/13	

7	

File processing question

n  Write a program that reads a text file and
adds line numbers at the beginning of each
line

CS 160 - Fall Semester 2013 25

Solution

int count = 0;
while (scan.hasNextLine()) {
 String line = scan.nextLine();
 System.out.println(count + “ “ + line);
 count++;
}

CS 160 - Fall Semester 2013 26

Problem

n  Given a file with the following contents:
 123 Susan 12.5 8.1 7.6 3.2
 456 Brad 4.0 11.6 6.5 2.7 12
 789 Jennifer 8.0 8.0 8.0 8.0 7.5

q  Consider the task of computing hours worked by each
person

q  Approach:
n  Break the input into lines.
n  Break each line into tokens.

CS 160 - Fall Semester 2013 27

Scanner on strings

n  A Scanner can tokenize a String, such as a line of a file.

 Scanner <name> = new Scanner(<String>);

q  Example:

 String text = "1.4 3.2 hello 9 27.5";
 Scanner scan = new Scanner(text);
 System.out.println(scan.next()); // 1.4
 System.out.println(scan.next()); // 3.2
 System.out.println(scan.next()); // hello

CS 160 - Fall Semester 2013 28

11/4/13	

8	

Tokenize an entire file

n  We can use string Scanner(s) to tokenize each line of
a file:

Scanner scan = new Scanner(new File(<file name));
while (scan.hasNextLine()) {

 String line = scan.nextLine();

 Scanner lineScan = new Scanner(line);
 <process this line...>;
}

CS 160 - Fall Semester 2013 29

Example

n  Example: Count the tokens on each line of a file.

 Scanner scan = new Scanner(new File("input.txt"));
 while (scan.hasNextLine()) {
 String line = scan.nextLine();
 Scanner lineScan = new Scanner(line);
 int count = 0;
 while (lineScan.hasNext()) {
 String token = lineScan.next();
 count++;
 }
 System.out.println("Line has “+count+" tokens");
 }

Input file input.txt:
23 3.14 John Smith "Hello world"

 45.2 19

Output to console:
Line has 6 tokens

Line has 2 tokens

CS 160 - Fall Semester 2013 30

Opening a file for writing

n  Same story as reading, we must handle exceptions:
public static void main(String[] args) {

 try {
 File file = new File(“output.txt”);
 PrintWriter output = new PrintWrite(file);
 output.println(“Integer number: ” + 987654);
 ...

 } catch (IOException e) {
 System.out.println(“Unable to write output.txt”);
 System.exit(-1);
 }

CS 160 - Fall Semester 2013 31

File output

n  You can output all the same things as you would with
System.out.println:

n  Discussion so far has been limited to text files.

 output.println(”Double: " + fmt.format(123.456));
 output.println("Integer: " + 987654);
 output.println("String: " + "Hello There");

n  Binary files store data as numbers, not characters.
n  Binary files are not human readable, but more efficient.

CS 160 - Fall Semester 2013 32

