| Na | ıme: | Date: | | | | |----|--|---|--|--|--| | | | CS 160, Spring 2014 Homework 1 Propositional Proofs | | | | | Mo | | n a paper copy of this assignment at the beginning of your recitation on
rch 24 th or Tuesday, March 25 th , no electronic submissions for this
please! | | | | | An | swer all th | ree questions. | | | | | 1. | (30 points) Prove using Rules of Inference and Logical Equivalences. State specific rule for each step. Use as many steps as you need. | | | | | | | Given: | $\begin{aligned} p \\ p \rightarrow q \\ \neg q \lor r \end{aligned}$ | | | | | | Prove: | r | | | | | | <u>Step</u> | Statement Reason (Include Appropriate Step # if applicable) | | | | | | 1. | | | | | | | 2. | | | | | | | 3. | | | | | | | 4. | | | | | | | 5. | | | | | | | 6. | | | | | | | 7. | | | | | | Name: | Date: | | |-------|-----------------------------------|--| | | CS 160, Spring 2014
Homework 1 | | | | Propositional Proofs | | 2. (40 points) Prove using Rules of Inference and Logical Equivalences. State specific rule for each step. Use as many steps as you need. Given: $(p \land q) \rightarrow \neg r$ r q (Prove: $\neg \mathbf{p}$ Step Statement Reason (Include Appropriate Step # if applicable) - 1. - 2. - 3. - 4. - 5. - 6. - 7. | Na | ıme: | | Date: | | | |----|--|--|--|--------------------------------|--| | | | | CS 160, Spring 201
Homework 1
Propositional Proc | | | | 3. | (30 points) Prove this equivalence using Logical Equivalences. Note that you cannot use Inference Rules (and you should know why not). State specific rule for each step. Use as many steps as you need. $((\neg(t \rightarrow s)) \lor t) \equiv t$ | | | | | | | Step | | | ropriate Step # if applicable) | | | | 1. | | (| | | | | 2. | | | | | | | 3. | | | | | | | 4. | | | | | | | | | | | | 5. 6. 7.