

Computer Basics

TOPICS

- Computer Organization
- Data Representation
- Program Execution
- Computer Languages

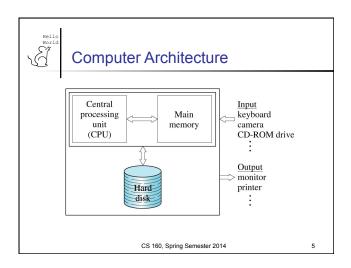
Hello World

Hardware and Software

- Computer systems consist of hardware and software.
 - Hardware includes the tangible parts of computer systems.
 - Software includes programs sets of instructions for the computer to follow.
- Familiarity with hardware basics helps us understand software.

CS 160, Spring Semester 2014

.



Hardware

- The majority of modern computers have similar components including:
 - Input devices (keyboard, mouse, etc.)
 - Output devices (display screen, printer, etc.)
 - Central Processing Unit (CPU) or processor
 - Main and auxiliary (secondary) memory

CS 160, Spring Semester 2014

Processors

- The processor is also called the CPU (Central Processing Unit)
- Processes a relatively simple set of instructions.
- Programs must be translated into the specific instruction set.
- The power of computing comes from speed and program intricacy.

CS 160, Spring Semester 2014

Main memory

- Working memory used to store
 - set of instructions for current program
 - data the program is using
 - results of intermediate calculations
- Now measured in gigabytes
 - e.g. 8 gigabytes of RAM
 - RAM is short for random access memory
 - A byte is a quantity of memory

CS 160, Spring Semester 2014

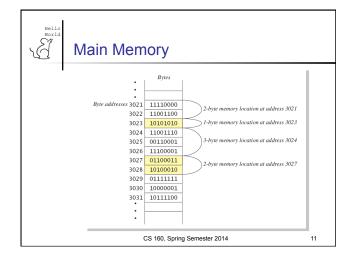
Auxiliary Memory

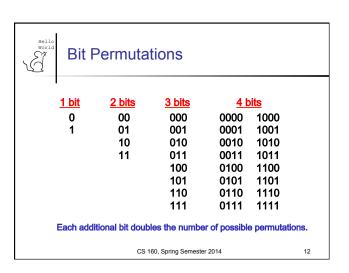
- Also called secondary memory
- Disk drives, optical drives (CD/DVD), flash drives, etc.
- More or less permanent (nonvolatile)
- Usually measured in gigabytes
 - e.g. 512 gigabyte hard drive

CS 160, Spring Semester 2014

Data Representation

- Computers store data as binary numbers, not decimal!
- Numbers can be used to represent almost any type of data:
 - Characters (e.g. 'a') are represented by numbers, strings (e.g. "foo") are just groups of characters
 - Pictures are represented by dividing them into picture elements known as pixels
 - Video images or animations are represented by placing several pictures one after another
 - Sounds are represented by sampling the pressure wave at regular intervals


CS 160, Spring Semester 2014



Bits, Bytes and Words

- Bit: 0 or 1
- Byte: sequence of eight bits: 00101110
- Word: sequence of 2, 4 or 8 bytes
- To computer, everything is a sequence of bits!
- If we have 4 bits, how many things can we represent?

CS 160, Spring Semester 2014

Bit Permutations

- Each permutation can represent a particular item
- There are 2^N permutations of N bits
- N bits are needed to represent 2^N unique items

```
How many items can be represented by

\begin{cases}
1 \text{ bit ?} & 2^1 = 2 \text{ items} \\
2 \text{ bits ?} & 2^2 = 4 \text{ items} \\
3 \text{ bits ?} & 2^3 = 8 \text{ items} \\
4 \text{ bits ?} & 2^4 = 16 \text{ items} \\
5 \text{ bits ?} & 2^5 = 32 \text{ items}
\end{cases}
```

How many items can be represented by 8 bits? 16 bits? 32 bits? 64 bits?

CS 160, Spring Semester 2014

Positional Representation

- Decimal number representation:
 - What does 256 mean?

```
2 * 100 + 5 * 10 + 6

2 * 10^{2} + 5 * 10^{1} + 6 * 10^{0}
```

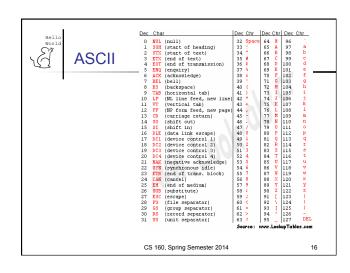
- Binary number representation:
 - What does 10010 mean?

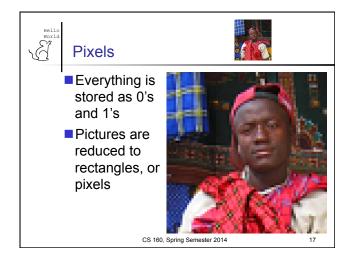
```
1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0

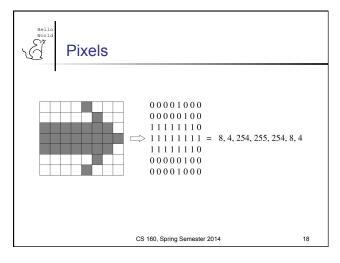
1 * 16 + 0 * 8 + 0 * 4 + 1 * 2 + 0 * 0 = 18
```

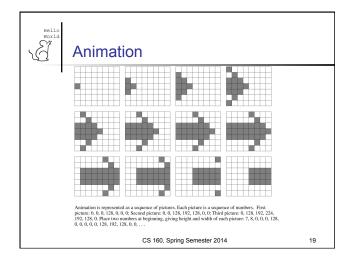
- Let's count 0 to 15 in binary.
 - Add 1 each time, carry just like in base 10

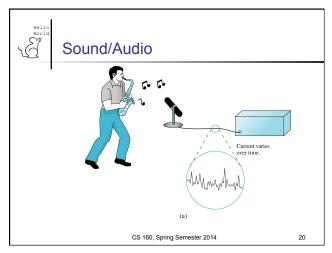
CS 160, Spring Semester 2014

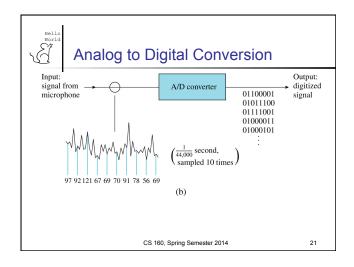

14




Text Representation


- Remember to a computer everything is stored in a binary format
- Need to convert from characters (what is on a keyboard) to bit representation
 - ■ASCII: 7 bit mapping in one byte,
 - Each character maps to different value,
 - A decimal digit is also a character and has a mapping, e.g., '0' is 00110000 (48 in decimal).


CS 160, Spring Semester 2014



Files

- Large groups of bytes in auxiliary memory are called files.
- Files have names and extensions, managed by operating system.
- Files are organized into groups called directories or folders.
- Java programs are stored in files, and are copied to memory before running.

CS 160, Spring Semester 2014

The Operating System

- The operating system is a supervisory program that:
 - oversees the operation of the computer
 - controls resources such as disk drives
 - retrieves and starts program for you
- Well-known operating systems:
 - Microsoft Windows, Apple Mac OS, Linux, and UNIX.

CS 160, Spring Semester 2014

Computer Languages

- Low-Level Languages
 - Machine Code
 - Assembly Code
- High-Level Languages
 - Fortran
 - COBOL, BASIC
 - Pascal, C,
 - C++, Java
 - Perl, Python
 - R, Matlab
- Interpretation versus Compilation
- Visual Languages

CS 160, Spring Semester 2014

Programming Languages

- High-level languages are relatively easy to use for the programmer:
 - Java, C#, C++, Python, Ruby, etc.
- Low-level languages are very complex and error prone, but computers don't understand high-level languages!
 - High-level language programs must be translated into low-level languages.

CS 160, Spring Semester 2014

25

Compilers

- A compiler translates a program from a high-level language to a low-level language that the computer can run.
- You compile a program by running the compiler on the source code of the high-level program.
- Compilers produce machine or assembly-language programs called object programs.

CS 160, Spring Semester 2014

Java Byte-Code

- The Java compiler doesn't translate a Java program into assembly or machine language for a particular computer.
- Instead, it translates a Java program into byte-code.
 - Byte-code is the machine language for a hypothetical computer (or interpreter) called the Java Virtual Machine.

CS 160, Spring Semester 2014

Java Byte-Code

- A byte-code program is easy to translate into machine language for any particular computer, this can be done 'on-the-fly'.
- A program called an interpreter translates each byte-code instruction, executing the resulting machinelanguage.

CS 160. Spring Semester 2014

Compiling, Interpreting, Running

- Use the compiler to translate the Java program into byte-code (done using the javac command).
- Use the Java virtual machine for your computer to translate each byte-code instruction into machine language.
- Eclipse tool makes all this very easy!

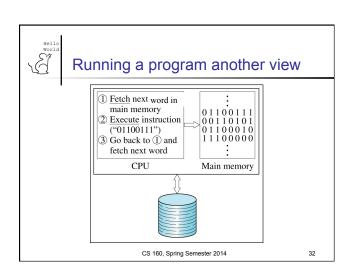
CS 160, Spring Semester 2014

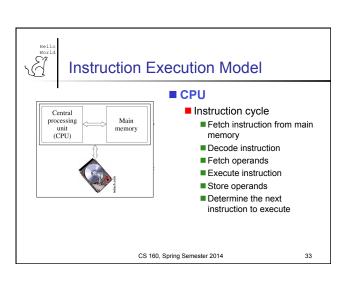
29

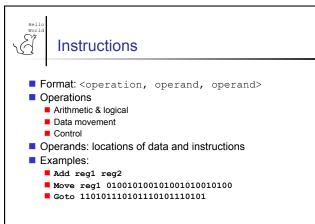
Portability

- After compiling a Java program into byte-code, the byte-code can be used on any computer with a byte-code interpreter without recompiling.
- Byte-code can be sent over the Internet and used anywhere in the world, this makes Java highly portable and thus suitable for Internet applications.

CS 160, Spring Semester 2014


-00




Running a Program

- 1. First the program and all its data are copied from the hard disk into main memory.
- The CPU goes to the location of the program instruction and reads that word.
- 3. The CPU determines what action is requested by decoding its bit pattern representation.
- 4. The CPU performs the action, usually a math operation or memory read/write.
- 5. The CPU moves to the location of the next program instruction in memory and repeats the process.

CS 160, Spring Semester 2014

CS 160, Spring Semester 2014