

Sets and Functions (Rosen, Sections 2.1,2.2, 2.3)

TOPICS

- · Discrete math
- Set Definition
- · Set Operations
- Tuples

Why Study Discrete Math?

- Digital computers are based on discrete units of data (bits).
- Therefore, both a computer's
 - structure (circuits) and
 - operations (execution of algorithms)

can be described by discrete math

 A generally useful tool for rational thought! Prove your arguments.

CS 160, Spring Semester 2014

2

What is 'discrete'?

- Consisting of distinct or unconnected elements, not continuous (calculus)
- Helps us in Computer Science:
 - What is the probability of winning the lottery?
 - How many valid Internet address are there?
 - How can we identify spam e-mail messages?
 - How many ways are there to choose a valid password on our computer system?
 - How many steps are need to sort a list using a given method?
 - How can we prove our algorithm is more efficient than another?

CS 160, Spring Semester 2014

Uses for Discrete Math in Computer Science

- Advanced algorithms & data structures
- Programming language compilers & interpreters.
- Computer networks
- Operating systems
- Computer architecture
- Database management systems
- Cryptography
- Error correction codes
- Graphics & animation algorithms, game engines, etc....
- i.e., the whole field!

CS 160, Spring Semester 2014

What is a set?

- An unordered collection of objects
 - {1, 2, 3} = {3, 2, 1} since sets are unordered.
 - $\{a, b, c\} = \{b, c, a\} = \{c, b, a\} = \{c, a, b\} = \{a, c, b\}$

 - {on, off}
 - {}

CS 160, Spring Semester 2014

What is a set?

- Objects are called elements or members of the set
- Notation ∈
 - $a \in B$ means "a is an element of set B."
 - Lower case letters for elements in the set
 - Upper case letters for sets
 - If $A = \{1, 2, 3, 4, 5\}$ and $x \in A$, what are the possible values of x?

CS 160, Spring Semester 2014

What is a set?

- Infinite Sets (without end, unending)
 - N = {0, 1, 2, 3, ...} is the Set of natural numbers

 - Z = {..., -2, -1, 0, 1, 2, ...} is the Set of integers
 Z + = {1, 2, 3, ...} is the Set of positive integers
- Finite Sets (limited number of elements)
 - V = {a, e, i, o, u} is the Set of vowels
 - $O = \{1, 3, 5, 7, 9\}$ is the Set of odd #'s < 10
 - F = {a, 2, Fred, New Jersey}
 - Boolean data type used frequently in programming
 - B = {0,1}
 - B = {false, true}
 - Seasons = {spring, summer, fall, winter}
 - ClassLevel = {Freshman, Sophomore, Junior, Senior}

CS 160, Spring Semester 2014

7

What is a set?

- Infinite vs. finite
 - If finite, then the number of elements is called the *cardinality*, denoted |S|
 - V = {a, e, i, o, u}
- |V| = 5
- F = {1, 2, 3}
- |F| = 3
- B = {0,1}
- |B| = 2

S = {spring, summer, fall, winter} |S| = 4

CS 160, Spring Semester 2014

Example sets

- Alphabet
- All characters
- Booleans: true, false
- Numbers:
 - **N**={0,1,2,3...} Natural numbers
 - **Z**={...,-2,-1,0,1,2,...} Integers
 - Q= $\{p/q \mid p \in Z, q \in Z, q \neq 0\}$ Rationals
 - R, Real Numbers
- Note that:
 - Q and R are not the same. Q is a subset of R.
 - N is a subset of Z.

CS 160, Spring Semester 2014

9

What is a set?

- Defining a set:
 - Option 1: List the members
 - Option 2; Use a set builder that defines set of x that hold a certain characteristic
 - Notation: $\{x \in S \mid \text{characteristic of } x\}$
 - Examples:
 - A = { $x \in Z^+ | x \text{ is prime } \}$ set of all prime positive integers
 - O = { x ∈ N | x is odd and x < 10000 } set of odd natural numbers less than 10000

CS 160, Spring Semester 2014

Equality

- Two sets are *equal* if and only if (iff) they have the same elements.
- We write A=B when for all elements x, x is a member of the set A iff x is also a member of B.
 - Notation: $\forall x \{ x \in A \Leftrightarrow x \in B \}$
 - For all values of x, x is an element of A if and only if x is an element of B

CS 160, Spring Semester 2014

Set Operations

- Operations that take as input sets and have as output sets
- Operation1: Union
 - The union of the sets A and B is the set that contains those elements that are either in A or in B, or in both.
 - Notation: $A \cup B$
 - Example: union of {1,2,3} and {1,3,5} is?

CS 160, Spring Semester 2014

13

Operation 2: Intersection

- The intersection of sets A and B is the set containing those elements in both A and B.
- Notation: $A \cap B$
- Example: {1,2,3} intersection {1,3,5} is?
- The sets are disjoint if their intersection produces the empty set.

CS 160, Spring Semester 2014

14

Operation3: Difference

- The difference of A and B is the set containing those elements that are in A but not in B.
- Notation: A B
- Aka the complement of B with respect to A
- Example: {1,2,3} difference {1,3,5} is?
- Can you define Difference using union, complement and intersection?

CS 160, Spring Semester 2014

15

Operation3: Complement

- The complement of set A is the complement of A with respect to U, the universal set.
- Notation: A
- Example: If N is the universal set, what is the complement of {1,3,5}?

Answer: {0, 2, 4, 6, 7, 8, ...}

CS 160, Spring Semester 2014

Identities

CS 160, Spring Semester 2014

17

19

Subset

- The set A is said to be a subset of B iff for all elements x of A, x is also an element of B.
 But not necessarily the reverse...
- Notation: $A \subseteq B \quad \forall x \{x \in A \rightarrow x \in B\}$
 - Unidirectional implication
- $\{1,2,3\} \subseteq \{1,2,3\}$
- $\{1,2,3\} \subseteq \{1,2,3,4,5\}$
- What is the cardinality between sets if $A \subseteq B$?

Answer: |A| <= |B|

CS 160, Spring Semester 2014

18

Subset

- <u>Subset</u> is when a set is contained in another set. Notation: ⊆
- Proper subset is when A is a subset of B, but B is not a subset of A. Notation:
 - $\forall x ((x \in A) \rightarrow (x \in B)) \land \exists x ((x \in B) \land (x \notin A))$
 - All values x in set A also exist in set B
 - ... but there is at least 1 value x in B that is not in A
 - A = {1,2,3}, B = {1,2,3,4,5}

 $A \subset B$, means that |A| < |B|.

CS 160, Spring Semester 2014

Empty Set

- Empty set has no elements and therefore is the subset of all sets. {} Alternate Notation: Ø
- Is Ø ⊆ {1,2,3}? Yes!
- The cardinality of \emptyset is zero: $|\emptyset| = 0$.
- Consider the set containing the empty set: {∅}.
- Yes, this is indeed a set: $\varnothing \in \{\varnothing\}$ and $\varnothing \subseteq \{\varnothing\}$.

CS 160, Spring Semester 2014

Set Theory - Definitions and notation

- Quiz time:
 - $A = \{x \in N \mid x \le 2000 \}$ What is |A| = 2001?
 - B = { x∈N | x ≥ 2000 } What is |B| = Infinite!
 - Is $\{x\} \subseteq \{x\}$? Yes
 - Is $\{x\} \in \{x,\{x\}\}$? Yes
 - Is $\{x\} \subseteq \{x,\{x\}\}$? Yes
 - Is $\{x\} \in \{x\}$? No

CS 160, Spring Semester 2014

21

23

Powerset

- The <u>powerset</u> of a set is the set containing all the subsets of that set.
- Notation: **P**(A) is the powerset of set A.
- Fact: | **P**(A) | = 2|A|.
- If A = { x, y }, then **P**(A) = {Ø, {x}, {y}, {x,y} }
- If $S = \{a, b, c\}$, what is P(S)?

CS 160, Spring Semester 2014

22

Powerset example

- Number of elements in powerset = 2ⁿ where n = # elements in set
- S is the set {a, b, c}, what are all the subsets of S?
 - {} the empty set
 - {a}, {b}, {c} one element sets
 - {a, b}, {a, c}, {b, c} two element sets
 - {a, b, c} the original set

and hence the power set of S has $2^3 = 8$ elements:

{{}, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}

CS 160, Spring Semester 2014

Example

- Consider binary numbers
 - E.g. 0101
- Let every bit position {1,...,n} be an item
 - Position i is in the set if bit i is 1
 - Position *i* is not in the set if bit *i* is 0
- What is the set of all possible N-bit numbers?
 - The powerset of $\{1, ...n\}$.

CS 160, Spring Semester 2014

Why sets?

- Programming Recall a class... it is the set of all its possible objects.
- We can restrict the *type* of an object, which is the set of values it can hold.
 - Example: Data Types

 int set of integers (finite)
 char set of characters (finite)
 - Is N the same as the set of integers in a computer?

CS 160, Spring Semester 2014

25

Order Matters

- What if order matters?
 - Sets disregard ordering of elements
 - If order is important, we use tuples
 - If order matters, then are duplicates important too?

CS 160, Spring Semester 2014

26

Tuples

- Order matters
- Duplicates matter
- Represented with parens ()
- Examples
 - $(1, 2, 3) \neq (3, 2, 1) \neq (1, 1, 1, 2, 3, 3)$ $(a_1, a_2, ..., a_n)$

CS 160, Spring Semester 2014

27

Tuples

- The ordered n-tuple $(a_1,a_2,...,a_n)$ is the ordered collection that has a_1 as its first element a_2 as its second element ... and a_n as its nth element.
- An ordered pair is a 2-tuple.
- Two ordered pairs (a,b) and (c,d) are equal iff a=c and b=d (e.g. NOT if a=d and b=c).
- A 3-tuple is a *triple*; a 5-tuple is a *quintuple*.

CS 160, Spring Semester 2014

Tuples

- In programming?
 - Let's say you're working with three integer values, first is the office room # of the employee, another is the # years they've worked for the company, and the last is their ID number.
 - Given the following <u>set</u> {320, 13, 4392}, how many years has the employee worked for the company?
 - What if the set was {320, 13, 4392}?
 Doesn't {320, 13, 4392} = {320, 4392, 13}?
 - Given the <u>3-tuple</u> (320, 13, 4392) can we identify the number of years the employee worked?

CS 160, Spring Semester 2014

29

Why?

- Because ordered n-tuples are found as lists of arguments to functions/methods in computer programming.
- Create a mouse in a position (2, 3) in a maze: new Mouse (2, 3)
- Can we reverse the order of the parameters?
- From Java, Math.min(1,2)

CS 160, Spring Semester 2014

20

Cartesian Product of Two Sets

- Let A and B be sets. The Cartesian Product of A and B is the set of all ordered pairs (a,b), where $b \in B$ and $a \in A$
- Cartesian Product is denoted A x B.
- Example: A={1,2} and B={a,b,c}. What is A x B and B x A?

Discrete Motherwision and Ageleutions

Cartesian Product

- A = {a, b}
- $B = \{1, 2, 3\}$
- A X B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}
- B X A = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

CS 160, Spring Semester 2014

31

CS 160, Spring Semester 2014

Functions in CS

- Function = mappings or transformations
- Examples

```
f(x) = x
```

$$f(x) = x + 1$$

$$f(x) = 2x$$

 $f(x) = x^2$

CS 160, Spring Semester 2014

Discrete
Mathematics
out to
Applications

33

35

Function Definitions

- A function **f** from sets **A** to **B** assigns exactly one element of **B** to each element of **A**.
- Example: the **floor** function

What's the difference between codomain and range?

Range: {1,2,4,5}

Range contains the codomain values that A maps to

CS 160, Spring Semester 2014

Function Definitions

- In Programming
 - Function header definition example

```
int floor( float real)
{
```

- Domain = R
- Codomain = Z

CS 160, Spring Semester 2014

Other Functions

The identity function, f_{ID}, on A is the function where: f_{ID}(x) = x for all x in A.

$$A = \{a,b,c\}$$
 and $f(a) = a$, $f(b) = b$, $f(c) = c$

- Successor function, $f_{succ}(x) = x+1$, on \mathbb{Z}
 - f(1) = 2
 - f(-17) = -16
 f(a) Does NOT map to b

- Predecessor function, $f_{pred}(x) = x-1$, on Z
 - f(1) = 0
 - f(-17) = -18

CS 160, Spring Semester 2014

Other Functions

- $f_{NEG}(x) = -x$, also on **R** (or **Z**), maps a value into the negative of itself.
- $f_{SQ}(x) = x^2$, maps a value, x, into its square, x^2 .
- The **ceiling** function: ceil(2.4) = 3.

CS 160, Spring Semester 2014

37

What is NOT a function?

- Consider $f_{SQRT}(x)$ from \mathbb{Z} to \mathbb{R} .
- This does **not** meet the given definition of a function, because $f_{SORT}(16) = \pm 4$.
- In other words, $f_{SQRT}(x)$ assigns exactly <u>one</u> element of ${\bf Z}$ to <u>two</u> elements of ${\bf R}$.

No Way!
Say it ain't so!!

Note that the convention is that \sqrt{x} is always the positive value. $f_{SQRT}(x) = \pm \sqrt{x}$

CS 160, Spring Semester 2014

39

1 to 1 Functions

- A function f is said to be one-to-one or injective if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.
- Example: the square function from Z⁺ to Z⁺

CS 160, Spring Semester 2014

CS 160, Spring Semester 2014

Quiz Check

• Is the following an increasing function?

$$Z \rightarrow Z$$
 $f(x) = x + 5$

$$Z \rightarrow Z$$
 $f(x) = 3x - 1$

CS 160, Spring Semester 2014