

Rules of Inference (Rosen, Section 1.6)

TOPICS

- Logic Proofs

Propositional Logic Proofs

- An *argument* is a sequence of propositions:
 - ♦ Premises (Axioms) are the first n propositions
 - ♦ *Conclusion* is the final proposition.
- An argument is *valid* if $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$ is a tautology, given that p_i are the premises (axioms) and q is the conclusion.

CS160 - Spring Semester 2014

Proof Method #1: Truth Table

- If the conclusion is true in the truth table whenever the premises are true, it is
 - Warning: when the premises are false, the conclusion my be true or false
- Problem: given *n* propositions, the truth table has 2^n rows
 - Proof by truth table guickly becomes infeasible

CS160 - Spring Semester 2014

Example Proof by Truth Table

 $s = ((p \vee q) \land (\neg p \vee r)) \rightarrow (q \vee r)$

p	q	r	ط	pvq	¬р∨г	qvr	(p v q)∧ (¬p v r)	S
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	1
1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	0	1
1	1	1	0	1	1	1	1	1

CS160 - Spring Semester 2014

Proof Method #2: Rules of Inference

- A rule of inference is a pre-proved relation: any time the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match a premise to the LHS (by substituting propositions), we can assert the (substituted) RHS

CS160 - Spring Semester 2014

5

Inference properties

- Inference rules are truth preserving
 - If the LHS is true, so is the RHS
- Applied to true statements
 - Axioms or statements proved from axioms
- Inference is syntactic
 - Substitute propositions
 - if p replaces q once, it replaces q everywhere
 - If p replaces q, it only replaces q
 - Apply rule

CS160 - Spring Semester 2014

Example Rule of Inference

Modus Ponens
$$(p \land (p \rightarrow q)) \rightarrow q$$

p	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$(p \land (p \rightarrow q)) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

CS160 - Spring Semester 2014

Rules of Inference

Rules of Inference

 $\begin{array}{cccc} \hline \text{Modus Ponens} & \text{Modus Tollens} & \text{Hypothetical Syllogism} \\ \hline \rho & \neg q & p \rightarrow q \end{array}$

 $\begin{array}{ccc} & q \lor r \\ \\ \text{Simplification} & \text{Conjunction} \\ & p \land q & p \end{array}$

 $\frac{p}{p \wedge q}$

CS160 - Spring Semester 2014

8

Logical Equivalences

Logical Equivalences

DeMorgan's Laws Idempotent Laws Distributive Laws

 $\neg (p \land q) \equiv \neg p \lor \neg q \qquad p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $\neg (p \lor q) \equiv \neg p \land \neg q \qquad p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \vee p \equiv p$ $p \wedge p \equiv p$

Double Negation Associative Laws Absorption Laws $\neg(\neg p) \equiv p$

 $p \vee (p \wedge q) \equiv p$ $p \land (p \lor q) \equiv p$

Commutative Laws Implication Laws

 $p \rightarrow q \equiv \neg p \lor q$ $p \vee q \equiv q \vee p$ $p \wedge q \equiv q \wedge p$ $p \to q \equiv \neg q \to \neg p$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

> Biconditional Laws $p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

 $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

CS160 - Spring Semester 2014

Modus Ponens

If p, and p implies q, then q

Example:

p = it is sunny, q = it is hot

 $p \rightarrow q$, it is hot whenever it is sunny "Given the above, if it is sunny, it must be hot".

CS160 - Spring Semester 2014

Modus Tollens

If not q and p implies q, then not p Example:

p = it is sunny, q = it is hot $p \rightarrow q$, it is hot whenever it is sunny "Given the above, if it is not hot, it cannot be sunny."

CS160 - Spring Semester 2014

Hypothetical Syllogism

If p implies q, and q implies r, then p implies r

Example:

p = it is sunny, q = it is hot, r = it is dry

 $p \rightarrow q$, it is hot when it is sunny

 $q \rightarrow r$, it is dry when it is hot

"Given the above, it must be dry when it is sunny"

CS160 - Spring Semester 2014

Disjunctive Syllogism

If p or q, and not p, then q Example:

p = it is sunny, q = it is hotp v q, it is hot or sunny"Given the above, if it not sunny, but it is hot or sunny, then it is hot"

CS160 - Spring Semester 2014

14

Resolution

If p or q, and not p or r, then q or r Example:

p = it is sunny, q = it is hot, r = it is dry

p v q, it is sunny or hot

 $\neg p \lor r$, it is not hot or dry

"Given the above, if it is sunny or hot, but not sunny or dry, it must be hot or dry"

Not obvious!

CS160 - Spring Semester 2014

Addition

If p then p or q

Example:

p = it is sunny, q = it is hot

p v q, it is hot or sunny

"Given the above, if it is sunny, it must be hot or sunny"

Of course!

CS160 - Spring Semester 2014

Simplification

If p and q, then p

Example:

p = it is sunny, q = it is hot

p ∧ q, it is hot and sunny

"Given the above, if it is hot and sunny, it must be hot"

Of course!

CS160 - Spring Semester 2014

. .

Conjunction

If p and q, then p and q

Example:

p = it is sunny, q = it is hot

p ∧ q, it is hot and sunny

"Given the above, if it is sunny and it is hot, it must be hot and sunny"

Of course!

CS160 - Spring Semester 2014

A Simple Proof

Given X, $X \rightarrow Y$, $Y \rightarrow Z$, $\neg Z \lor W$, prove W

	Step	Reason
1.	$x \rightarrow y$	Premise
2.	$y \rightarrow z$	Premise
3.	$x \rightarrow z$	Hypothetical Syllogism (1, 2)
4.	x	Premise
5.	z	Modus Ponens (3, 4)
6.	$\neg z \lor w$	Premise
7.	w	Disjunctive Syllogism (5, 6)

CS160 - Spring Semester 2014

40

A Simple Proof

"In order to sign up for CS161, I must complete CS160 and either M155 or M160. I have not completed M155 but I have completed CS161. Prove that I have completed M160."

STEP 1) Assign propositions to each statement.

- A: CS161
- B: CS160
- C: M155
- D: M160

CS160 - Spring Semester 2014

Setup the proof

STEP 2) Extract axioms and conclusion.

- Axioms:
 - $A \rightarrow B \land (C \lor D)$
 - A
 - ¬C
- Conclusion:
 - D

CS160 - Spring Semester 2014

20

Now do the Proof

STEP 3) Use inference rules to prove conclusion.

	Step	Reason
1.	$A \rightarrow B \land (C \lor D)$	Premise
2.	A	Premise
3.	B Λ (C v D)	Modus Ponens (1, 2)
4.	CvD	Simplification (3)
5.	¬C	Premise
6.	D	Disjunctive Syllogism (4, 5)

CS160 - Spring Semester 2014

Another Example

Given: Conclude: $\neg q \rightarrow s$ $p \rightarrow q$

 $\neg p \rightarrow r$

 $r \rightarrow s$

CS160 - Spring Semester 2014

Proof of Another Example

	Step	Reason
1.	$p \rightarrow q$	Premise
2.	$\neg q \rightarrow \neg p$	Implication law (1)
3.	$\neg p \rightarrow r$	Premise
4.	$\neg q \rightarrow r$	Hypothetical syllogism (2, 3)
5.	$r \rightarrow s$	Premise
6.	$\neg q \rightarrow s$	Hypothetical syllogism (4, 5)
	•	CS160 - Spring Semester 2014

Proof using Rules of Inference and Logical Equivalences

Prove: $\neg(p \lor (\neg p \land q)) \equiv (\neg p \land \neg q)$

 $\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$

 $\equiv \neg p \land (\neg (\neg p) \lor \neg q)$

By 1st DeMorgan's

 $\equiv \neg p \land (p \lor \neg q)$

By double negation

By 2nd DeMorgan's

 $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ By 2nd distributive

 \equiv F \vee ($\neg p \land \neg q$) \blacksquare By definition of \land

■ By commutative law

 $\equiv (\neg p \land \neg q) \lor F$ $\equiv (\neg p \land \neg q)$

■ By definition of v

CS160 - Spring Semester 2014