

Proof Techniques (Rosen, Sections 1.7 1.8)

TOPICS

- Direct Proofs
- Proof by Contrapositive
- Proof by Contradiction
- · Proof by Cases

Proof Terminology

Theorem: statement that can be shown to be true

Proof: a valid argument that establishes the truth of a
theorem

Axioms: statements we assume to be true

Lemma: a less important theorem that is helpful in the proof of other results

Corollary: theorem that can be established directly from a theorem that has been proved

Conjecture: statement that is being *proposed* to be a true statement

CS160 - Spring Semester 2014

2

Learning objectives

- Direct proofs
- Proof by contrapositive
- Proof by contradiction
- · Proof by cases

CS160 - Spring Semester 2014

Technique #1: Direct Proof

- Direct Proof:
 - First step is to clearly state the premise
 - Subsequent steps use rules of inference or other premises
 - Last step proves the conclusion

CS160 - Spring Semester 2014

Direct Proof Example

- Prove "If n is an odd integer, then n^2 is odd."
 - If n is odd, then n = 2k+1 for some integer k.
 - $-n^2 = (2k+1)^2 = 4k^2 + 4k + 1$
 - Therefore, $n^2 = 2(2k^2 + 2k) + 1$, which is odd.

Add 1 to any even # → odd #

CS160 - Spring Semester 2014

More formal version...

	Step	Reason
1.	n is odd	Premise
2.	∃k∈Z n = 2k+1	Def of odd integer in (1)
3.	$n^2 = (2k+1)^2$	Squaring (2)
4.	$= 4k^2 + 4k + 1$	Algebra on (3)
5.	$= 2(2k^2 + 2k) + 1$	Algebra on (4)
6.	∴ n ² is odd	Def odd int, from (5)

CS160 - Spring Semester 2014

6

Class Exercise

- Prove: If n is an even integer, then n^2 is even.
 - If n is even, then n = 2k for some integer k.
 - $-n^2 = (2k)^2 = 4k^2$
 - Therefore, $n = 2(2k^2)$, which is even.

CS160 - Spring Semester 2014

Can you do the formal version?

	Step	Reason
1.	n is even	Premise
2.	∃ <i>k</i> ∈Z <i>n</i> = 2 <i>k</i>	Def of even integer in (1)
3.	$n^2 = (2k)^2$	Squaring (2)
4.	= 4k ²	Algebra on (3)
5.	$= 2(2k^2)$	Algebra on (4)
6.	∴ n ² is even	Def even int, from (5)

CS160 - Spring Semester 2014

Technique #2: Proof by Contrapositive

 A direct proof, but starting with the contrapositive equivalence:

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

- If you are asked to prove $p \rightarrow q$, ...
- ..., you instead prove ¬q → ¬p!
- Why? Sometimes, it may be easier to directly prove $\neg q \rightarrow \neg p$ than $p \rightarrow q$

CS160 - Spring Semester 2014

9

Proof by Contrapositive Example

- Prove: If n² is an even integer, then n is even.
 (n² even) → (n even)
- By the contrapositive: This is the same as showing that $\neg (n \text{ even}) \rightarrow \neg (n^2 \text{ even})$
- If *n* is odd, then n² is odd. (proved on slides 4 and 5)
- Since we have proved the contrapositive:
 - $\neg (n \text{ even}) \rightarrow \neg (n^2 \text{ even})$
- We have also proved the original hypothesis:

 $(n^2 \text{ even}) \rightarrow (n \text{ even})$

CS160 - Spring Semester 2014

10

Technique #3: Proof by Contradiction

Prove: If p then q.

- Proof strategy:
 - Assume p and the negation of q.
 - In other words, assume that $p \land \neg q$ is true.
 - Then arrive at a contradiction p ∧¬p (or something that contradicts a known fact).
 - Since this cannot happen, our assumption must be wrong, thus, ¬q is false. q is true.

CS160 - Spring Semester 2014

Dreat

Proof by Contradiction Example

Prove: If (3n+2) is odd, then n is odd.

Proof:

- Given: (3n+2) is odd.
- Assume that n is not odd, that is n is even.
- If n is even, there is some integer k such that n=2k.
- -(3n+2) = (3(2k)+2)=6k+2 = 2(3k+1), which is 2 times a number.
- Thus 3n+2 turned out to be even, but we know it's odd.
- This is a contradiction. Our assumption was wrong.
- Thus, n must be odd.

CS160 - Spring Semester 2014

Proof by Contradiction Example

Prove that the $\sqrt{2}$ is irrational.

- Assume that $\sqrt{2}$ is not irrational, i.e. $\sqrt{2}$ is rational.
- Hence, $\sqrt{2} = \frac{a}{b}$ and a and b have no common factors. (Rational definition, fraction must be in lowest terms.)
- So $a^2 = 2b^2$ which means a is even, hence a = 2c
- Therefore, $b^2 = 2c^2$ then b must be even
- So a and b have at least the common factor 2
- Contradiction, so $\sqrt{2}$ is irrational after all!

CS160 - Spring Semester 2014

13

Technique #4: Proof by Cases

- Given a problem of the form:
 - $(p_1 \vee p_2 \vee ... \vee p_n) \rightarrow q$
 - where $p_1, p_2, ..., p_n$ are the cases
- This is equivalent to the following:
 - $[(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land ... \land (p_n \rightarrow q)]$
- So prove all the clauses are true.

CS160 - Spring Semester 2014

14

Proof by Cases Example

- Prove: If n is an integer, then $n^2 \ge n$
 - $(n = 0 \lor n \ge 1 \lor n \le -1) \rightarrow n^2 \ge n$
- Show for all the three cases, i.e.,
 - $(n = 0 \rightarrow n^2 \ge n) \land (n \ge 1 \rightarrow n^2 \ge n)$ $\land (n \le -1 \rightarrow n^2 \ge n)$

CS160 - Spring Semester 2014

Proof by Cases (cont'd)

- Case 1: Show that $n = 0 \rightarrow n^2 \ge n$
 - When n=0, $n^2=0$.
 - 0≥0 ©
- Case 2: Show that $n \ge 1 \rightarrow n^2 \ge n$
 - Multiply both sides of the inequality by n
 - We get $n^2 \ge n$

CS160 - Spring Semester 2014

Proof by Cases (cont'd)

- Case 3: Show that $n \le -1 \rightarrow n^2 \ge n$
 - Given n ≤ -1,
 - We know that n² cannot be negative, i.e., n² > 0
 - We know that 0 > -1
 - Thus, n² > -1. We also know that -1 ≥ n (given)
 - Therefore, $n^2 \ge n$

CS160 - Spring Semester 2014

17

Proof by Cases Can you finish this?

Theorem: Given two real numbers \boldsymbol{x} and \boldsymbol{y} ,

abs(x*y)=abs(x)*abs(y)

Exhaustively determine the premises

Case p1: x>=0, y>=0

Proof: x*y>=0 so abs(x*y)=x*y and abs(x)=x and

abs(y)=y so abs(x)*abs(y)=x*y

Case p2: x<0, y>=0

Case p3: x > = 0, y < 0

Case p4: x<0, y<0

CS160 - Spring Semester 2014