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Discrete Math Review 
(Rosen, Chapter 1.1 – 1.7, 5.5) 

TOPICS 
•  Sets and Functions 
•  Propositional and Predicate Logic 
•  Logical Operators and Truth Tables 
•  Logical Equivalences and Inference Rules 
•  Proof Techniques 
•  Program Correctness 

Discrete Math Review 

n  What you should know about discrete math 
before the next midterm! 

n  Less theory, more problem solving, will be 
repeated in recitation and homework. 
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Set Definitions 

n  An unordered collection of objects (elements) 
n  Membership: 1 ∈ {1, 2, 3, 4, 5}, 6 ∉ {1, 2, 3} 
n  Builder: O = { x ∈ N | x is odd and x < 10} 
n  Equality: A = B if exactly the same elements 
n  Union: A∪B, set of elements in A or B 
n  Intersection: A ∩ B, set of elements in A and B 
n  Difference: A – B, set of elements in A but not B 
n  Complement: A, set of elements not in A but in U 
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Set Definitions, continued 

n  Empty Set: ∅, or { }, subset of all sets 
n  Cardinality: V = {a, e, i, o, u}, so |V| = 5 
n  Subset: A ⊆ B, all elements in A are in B 
n  Proper Subset: A⊂B, same as subset but A ≠ B 
n  Power Set: P(A), set of all subsets, |P(A)| = 2|A| 

n  Tuples: order matters, duplicates ok, (1, 3, 2) 
n  Cartesian Product: A x B, |A x B| = |A| x |B| 
n  Identities: A∪{ } = A, A ∩ { } = { } 
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Func%on	  Defini%ons	  

•  A	  func%on	  f	  	  from	  sets	  A	  to	  B	  assigns	  exactly	  
one	  element	  of	  B	  to	  each	  element	  of	  A.	  	  

•  Example:	  the	  floor	  func%on	  
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1	  to	  1	  Func%ons	  

•  A	  func%on	  f	  is	  said	  to	  be	  one-‐to-‐one	  or	  injec)ve	  if	  and	  
only	  if	  f(a) = f(b)	  implies	  that	  a = b	  for	  all	  a	  and	  b	  in	  
the	  domain	  of	  f.	  	  

•  Example:	  the	  square	  func%on	  from	  Z+	  to	  Z+	  
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Increasing	  Func%ons	  

•  A	  func%on	  f	  whose	  domain	  and	  co-‐domain	  are	  
subsets	  of	  the	  set	  of	  real	  numbers	  is	  called	  increasing	  
if	  	  f(x) <= f(y) 	  and	  strictly	  increasing	  if	  f(x) < f(y) 

•   Is	  floor	  an	  example?	  	  
	  

	  
	  

•  Is	  square	  an	  example?	  	  

1.5 < 1.7 and floor(1.5) = 1 = floor(1.7)  
1.2 < 2.2 and floor(1.2) = 1 < 2 = floor(2.2),  BUT it is NOT 

STRICTLY 
increasing. 

So YES floor 
is increasing 

When mapping Z to Z or R to R: 
square(-2) = 4 > 1 = square (1) yet -2 < 1 

NO square is NOT 
increasing 
UNLESS…. 

Domain is 
restricted to 
positive #’s 7 CS160 - Spring Semester 2014 

Sets and Functions 

n  (1) You should know set and tuple definitions 
and operations and be able to compute them. 

n  (2) You should understand sets well enough 
to determine the truth values of identities. 

n  (3) You should understand the definitions of 
the domain, co-domain, and range. 

n  (4) You should understand functions well 
enough to determine injective and increasing.  
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Propositional Logic 

n  A proposition is a statement that is either true 
or false 

n  Examples: 
n  Fort Collins is in Nebraska (false) 
n  Java is case sensitive (true) 
n  We are not alone in the universe (?) 

n  Every proposition is true or false, but its truth 
value may be unknown 
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n  ¬ logical not (negation) 
n  ∨ logical or (disjunction) 
n  ∧  logical and (conjunction) 
n  ⊕  logical exclusive or 
n  → logical implication (conditional) 
n  ↔ logical bi-implication (biconditional) 

 

Logical Operators 
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Truth Tables 
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p q p ∧ q 
 T T T 
 T F F 
 F T F 
 F F F 

p q p→ q 
 T T T 
 T F F 
 F T T 
 F F T 

n  (5) You should be able to write out the truth 
table for all logical operators, from memory. 

Compound Propositions 
n  Propositions and operators can be 

combined into compound propositions. 
n  (6) You should be able to make a truth table 

for any compound proposition: 

 p q ¬p p→q ¬p ∧ (p→q) 
 T T F T F 
 T F F F F 
 F T T T T 
 F F T T T 
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n  (7) You should be able to translate natural 
language to logic (can be ambiguous!): 

n  English:  
 “If the car is out of gas, then it will stop” 

n  Logic: 
    p equals “the car is out of gas” 

 q equals “the car will stop” 
 p → q 

 

English to Propositional Logic 
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n  (8) You should be able to translate 
propositional logic to natural language: 

n  Logic: 
    p equals “it is raining” 

 q equals “the grass will be wet” 
 p → q 

n  English:  
 “If it is raining, the grass will be wet.” 

Propositional Logic to English 
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n  Certain propositions are equivalent (meaning 
they share exactly the same truth values): 

n  For example: 
    ¬(p ∧ q) ≡ ¬p ∨ ¬q        De Morgan’s 
  (p ∧ T) ≡ p                      Identity Law 
  (p ∧ ¬p) ≡ F                    Negation Law 
   

Logical Equivalences: Definition 
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n  (9) And you should know how to prove logical 
equivalence with a truth table 

n  For example: ¬(p ∧ q) ≡ ¬p ∨ ¬q 
   

Logical Equivalences: Truth Tables 
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p q ¬p ¬q (p ∧ q)  ¬(p ∧ q) ¬p ∨ ¬q 
T T F F T F F 

T F F T F T T 

F T T F F T T 

F F T T F T T 
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n  (10) You should understand the logical 
equivalences and laws on the course web site. 

n  You should be able to prove any of them using 
a truth table that compares the truth values of 
both sides of the equivalence. 

n  Memorization of the logical equivalences is not 
required in this class. 

Logical Equivalences: Review 
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Logical Equivalences (Rosen) 
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Transformation via Logical 
Equivalences 

n  Distributive law 
n  Negation law 
n  Domination law 
n  De Morgan’s Law 

(11) You should be able to transform propositions 
using logical equivalences. 
 
Prove: ¬p ∨ (p ∧ q) ≡ ¬(p ∧ ¬q) 

¬p ∨ (p ∧ q) ≡ (¬p ∨ p) ∧ (¬p ∨ q) 
≡  T ∧ (¬p ∨ q) 

≡  (¬p ∨ q) 
≡  ¬(p ∧ ¬q) 
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Vocabulary 

n  (12) You should memorize the following 
vocabulary: 
n  A tautology is a compound proposition that is 

always true. 
n  A contradiction is a compound proposition 

that is always false.  
n  A contingency is neither a tautology nor a 

contradiction. 
n  And know how to decide the category for a 

compound proposition. 
CS160 - Spring Semester 2014 20 
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Examples 

T F T F 

F T T F 

Result is always 
true, no matter 

what A is Therefore, it is a 
tautology 

Result is always 
false, no matter 

what A is 

Therefore, it is a 
contradiction 

p ¬p p ∨¬p p ∧¬p 
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Logical Proof 

n  Given a set of axioms 
n  Statements asserted to be true 

n  Prove a conclusion 
n  Another propositional statement 

n  In other words: 
n  Show that the conclusion is true … 
n  … whenever the axioms are true 
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Logical Proof 

n  (13) You should be able to perform a logical 
proof via truth tables. 

n  (14) You should be able to perform a logical 
proof via inference rules. 

n  Both methods are described in the following 
slides. 
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Method 1: Proof by Truth Table 

n  Prove that p → q, given ¬ p 

p q ¬ p p → q 
T T F T 
T F F F 
F T T T 
F F T T 

For all rows in 
which axiom is 
true, conclusion 

is true 

Thus the 
conclusion 
follows from 
axiom 
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Method 2: Proof using Rules of 
Inference 

n  A rule of inference is a proven relation: when 
the left hand side (LHS) is true, the right 
hand side (RHS) is also true. 

n  Therefore, if we can match an axiom to the 
LHS by substituting propositions, we can 
assert the (substituted) RHS 
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Applying rules of inference 

n  Example rule: p, p→q ∴ q 
n  Read as “p and p→q, therefore q” 
n  This rule has a name: modus ponens 

n  If you have axioms r, r→s 
n  Substitute r for p, s for q 
n  Apply modus ponens 
n  Conclude s 
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Modus Ponens 
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n  If p, and p implies q, then q 
Example: 
p = it is sunny, q = it is hot 
p → q, it is hot whenever it is sunny 
“Given the above, if it is sunny, it must 
be hot”. 

Modus Tollens 
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n  If not q and p implies q, then not p 
Example: 
p = it is sunny, q = it is hot 
p → q, it is hot whenever it is sunny 
“Given the above, if it is not hot, it 
cannot be sunny.” 
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Rules of Inference (Rosen) 
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A Simple Proof: Problem Statement 

Example of a complete proof using inference rules, 
from English to propositional logic and back: 
n  If you don’t go to the store, then you cannot not 

cook dinner. (axiom) 
n  If you cannot cook dinner or go out, you will be 

hungry tonight. (axiom) 
n  You are not hungry tonight, and you didn’t go to 

the store. (axiom) 
n  You must have gone out to dinner. (conclusion) 

CS160 - Spring Semester 2014 30 

A Simple Proof: Logic Translation 

n  p: you go to the store 
n  q: you can cook dinner 
n  r: you will go out 
n  s: you will be hungry 
n  AXIOMS: ¬p → ¬q, ¬(q ∨ r) → s, ¬s, ¬p	

n  CONCLUSION: r 
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A Simple Proof: Applying Inference 

1.  ¬p → ¬q   Axiom 
2.  ¬(q ∨ r) → s   Axiom	


3.  ¬s     Axiom 
4.  ¬p     Axiom	


5.  ¬q                  Modus Ponens (1, 4) 
6.  q ∨ r    Modus Tollens (2, 3) 
7.  r                Disjunctive Syllogism (5, 6) 
CONCLUSION: You must have gone out to dinner! 
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Predicate Logic 

n  (15) You should recognize predicate logic 
symbols, i.e. quantifications. 

n  Quantification express the extent to which a 
predicate is true over a set of elements:   
n  Universal ∀, “for all” 
n  Existential ∃, “there exists” 

n  (16) You should able to translate between 
predicate logic and English, in both directions. 
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Predicate Logic (cont’d) 

n  Specifies a proposition (and optionally a 
domain), for example: 
n  ∃x ∈ N, -10 < x < -5      // False, since no negative x 
n  ∀x ∈ N, x > -1               // True, since no negative x 

n  (17) Must be able to find examples 
n  to prove ∃, e.g. ∃x ∈ Z, -1 < x < 1, x = 0 

n  (18) Must be able to find counterexamples 
n  to disprove ∀, e.g. ∀x ∈ Z, x > -1, x = -2 
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Direct Proof (19): Show that 5x + 3y is 
even when x and y are odd integers.	  

Step Reason 
1. O(x) ∧ O(y) → E(5x + 3y)  Hypothesis 

2. O(x) → x =  2j+1, O(y) → y = 2k+1 Odd Definition 

3. E(5(2j + 1) + 3(2k + 1))    Substitution 

4. E(10j + 5 + 6k + 3)  Algebra 

5. E(2(5j + 3k + 4)) = true    Even Definition 

6. ∴ E(5x + 3y) = true   Proves hypothesis 
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Contrapositive Proof (20): Show that 
when 5xy is even, then x or y is even 	  

Step Reason 

1. E(5xy) → E(x) ∨  E(y)  Hypothesis 

2. ¬(E(x)∨ E(y)) → ¬E(5xy)  Contrapositive 

3. O(x) ∧ O(y) → O(5xy)   De Morgan’s 

4. O(x) → x =  2j+1, O(y) → y = 2k+1 Odd Definition 

5. O(5(2j + 1)(2k + 1))    Substitution 

6. O(20jk + 10j + 10k + 5)   Algebra 

7. O(2(10jk + 5j + 5k + 2) + 1) = true Odd Definition 

8. ∴O(5xy) = true  Proves Contrapositive 
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Contradiction Proof (21): Show that 
when 5xy is even, then x or y is even 	  

Step Reason 

1. E(5xy) → E(x) ∨  E(y)  Hypothesis 

2. E(5xy) ∧ ¬(E(x) ∨ E(y))  Contradiction 

3. E(5xy) ∧ O(x) ∧ O(y))   De Morgan’s 

4. O(x) → x =  2j+1, O(y) → y = 2k+1  Odd Definition 

5. E(5(2j + 1)(2k + 1))    Substitution 

6. E(20jk + 10j + 10k + 5)    Algebra 

7. E(2(10jk + 5j + 5k + 2) + 1) = false  Odd Definition! 

8. ∴ E(5xy) = false  Disproves Contradiction 
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Proof by Cases (22): Given two real 
numbers x and y, |xy| = |x||y| 	  

Case 1: x>=0, y>=0, xy>=0 so |xy|=xy 
and |x|=x and |y|=y so |x||y|=xy 

Case 2: x<0, y>=0, xy<0 so |xy|=-xy 
and |x|=-x and |y|=y so |x||y|=-xy 

Case 3: x>=0, y<0, xy<0 so |xy|=-xy 
and |x|=x and |y|=-y so |x||y|=-xy 

Case 4: x<0, y<0, xy>=0 so |xy|=xy 
and |x|=-x and |y|=-y so |x||y|=xy 
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Pre and Post Conditions (23) 

public static int foo(int x) { 
    // Precondition: -4 <= x <= 3 

 return (x * x + 2 * x - 5); 
 // Postcondition -6 <= return value <= 10 

} 
f(-4) = 3, f(-3) = -2, f(-2) = -5, f(-1) = -6 
f(0) = -5, f(1) = -2, f(2) = 3, f(3) = 10 
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Pre and Post Conditions (24) 

public static int foo(int x) { 
    // Precondition: -4 <= x <= 2 

 return (x * x + 2 * x - 5); 
 // Postcondition -6 <= return <= 3 

} 
f(-5) = 10, f(-4) = 3, f(-3) = -2, f(-2) = -5,  
f(-1) = -6, f(0) = -5, f(1) = -2, f(2) = 3, f(3) = 10 
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Loop Invariants (25) 

int x = 1, y = 2, z = -5; 
while (x <= 5) { 

 z += y; 
 x++; 

} 
// Loop invariants 
y = 2, 1 <= x <= 6, -5 <= z <= 5  
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