

Set Definitions

- An unordered collection of objects (elements)
- Membership: $1 \in\{1,2,3,4,5\}, 6 \notin\{1,2,3\}$
- Builder: $O=\{x \in N \mid x$ is odd and $x<10\}$
- Equality: $\mathrm{A}=\mathrm{B}$ if exactly the same elements
- Union: $A \cup B$, set of elements in A or B
- Intersection: $A \cap B$, set of elements in A and B
- Difference: $A-B$, set of elements in A but not B
- Complement: \bar{A}, set of elements not in A but in U

Set Definitions, continued

- Empty Set: \varnothing, or $\}$, subset of all sets
- Cardinality: $\mathrm{V}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$, so $|\mathrm{V}|=5$
- Subset: A \subseteq B, all elements in A are in B
- Proper Subset: ACB, same as subset but A $\neq B$
- Power Set: $P(A)$, set of all subsets, $|P(A)|=2^{|A|}$
- Tuples: order matters, duplicates ok, $(1,3,2)$
- Cartesian Product: $\mathrm{A} \times \mathrm{B},|\mathrm{A} \times \mathrm{B}|=|\mathrm{A}| \times|\mathrm{B}|$
- Identities: $\mathrm{A} \cup\}=\mathrm{A}, \mathrm{A} \cap\{ \}=\{ \}$

- A proposition is a statement that is either true or false
- Examples:
- Fort Collins is in Nebraska (false)
- Java is case sensitive (true)
- We are not alone in the universe (?)
- Every proposition is true or false, but its truth value may be unknown

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

- (5) You should be able to write out the truth table for all logical operators, from memory.

Compound Propositions

- Propositions and operators can be combined into compound propositions.
- (6) You should be able to make a truth table for any compound proposition:

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{\sim} \boldsymbol{p}$	$\boldsymbol{p} \rightarrow \boldsymbol{q}$	$\boldsymbol{\sim} \boldsymbol{p}(\boldsymbol{p} \rightarrow \boldsymbol{q})$
T	T	F	T	F
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

CS160 - Spring Semester 2014

English to Propositional Logic

- (7) You should be able to translate natural language to logic (can be ambiguous!):
- English:
"If the car is out of gas, then it will stop"
- Logic:
p equals "the car is out of gas"
q equals "the car will stop"
$p \rightarrow q$

Propositional Logic to English

- (8) You should be able to translate propositional logic to natural language:
- Logic:
p equals "it is raining"
q equals "the grass will be wet"
$p \rightarrow q$
- English:
"If it is raining, the grass will be wet."

Logical Equivalences: Definition

- Certain propositions are equivalent (meaning they share exactly the same truth values):
- For example:
$\neg(p \wedge q) \equiv \neg p \vee \neg q \quad$ De Morgan's
$(p \wedge T) \equiv p$
$(p \wedge \neg p) \equiv F$
Identity Law
Negation Law
- (9) And you should know how to prove logical equivalence with a truth table
- For example: $\neg(p \wedge q) \equiv \neg p \vee \neg q$

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$\neg(p \wedge q)$	$\neg p v \neg q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

- (10) You should understand the logical equivalences and laws on the course web site.
- You should be able to prove any of them using a truth table that compares the truth values of both sides of the equivalence.
- Memorization of the logical equivalences is not required in this class.

Transformation via Logical Equivalences

(11) You should be able to transform propositions using logical equivalences.

Prove: $\neg p \vee(p \wedge q) \equiv \neg(p \wedge \neg q)$
$\neg p \vee(p \wedge q) \equiv(\neg p \vee p) \wedge(\neg p \vee q) \quad$ - Distributive law
$\equiv T \wedge(\neg p \vee q) \quad$ Negation law
$\equiv(\neg p \vee q) \quad$ - Domination law
$\equiv \neg(\mathrm{p} \wedge \neg \mathrm{q}) \quad$ • De Morgan's Law

Vocabulary

- (12) You should memorize the following vocabulary:
- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- A contingency is neither a tautology nor a contradiction.
- And know how to decide the category for a compound proposition.

| Example of a complete proof using inference rules, |
| :--- | :--- |
| from English to propositional logic and back: |
| If you don't go to the store, then you cannot not |
| cook dinner. (axiom) |
| If you cannot cook dinner or go out, you will be |
| hungry tonight. (axiom)
 - You are not hungry tonight, and you didn't go to
 the store. (axiom) |
| You must have gone out to dinner. (conclusion) |
| csi60- Spring semester2014 |

A Simple Proof: Logic Translation

- p: you go to the store
- q : you can cook dinner
- r: you will go out
- s : you will be hungry
- AXIOMS: $\neg p \rightarrow \neg q, \neg(q \vee r) \rightarrow s, \neg s, \neg p$
- CONCLUSION: r

A Simple Proof: Applying Inference	
1. $\neg p \rightarrow \neg q$	Axiom
2. $\neg(\mathrm{q} \vee \mathrm{r}) \rightarrow \mathrm{s}$	Axiom
3. $\neg \mathrm{s}$	Axiom
4. $\neg \mathrm{p}$	Axiom
5. $\neg \mathrm{q}$	Modus Ponens (1, 4)
6. $q \vee r$	Modus Tollens (2, 3)
7. r	Disjunctive Syllogism (5, 6)
CONCLUSION: You must have gone out to dinner!	
	Sping Semester 2014 32

- (15) You should recognize predicate logic symbols, i.e. quantifications.
- Quantification express the extent to which a predicate is true over a set of elements:
- Universal \forall, "for all"
- Existential ヨ, "there exists"
- (16) You should able to translate between predicate logic and English, in both directions.

Direct Proof (19): Show that $\mathbf{5 x} \boldsymbol{+ 3} \boldsymbol{y}$ is even when \boldsymbol{x} and \boldsymbol{y} are odd integers.

	Step	Reason
1.	$\mathrm{O}(\mathrm{x}) \wedge \mathrm{O}(\mathrm{y}) \rightarrow \mathrm{E}(5 \mathrm{x}+3 \mathrm{y})$	Hypothesis
2.	$\mathrm{O}(\mathrm{x}) \rightarrow \mathrm{x}=2 \mathrm{j}+1, \mathrm{O}(\mathrm{y}) \rightarrow \mathrm{y}=2 \mathrm{k}+1$	Odd Definition
3.	$\mathrm{E}(5(2 \mathrm{j}+1)+3(2 k+1))$	Substitution
4.	$\mathrm{E}(10 \mathrm{j}+5+6 \mathrm{k}+3)$	Algebra
5.	$\mathrm{E}(2(5 \mathrm{j}+3 \mathrm{k}+4))=$ true	Even Definition
6.	$\therefore \mathrm{E}(5 \mathrm{x}+3 \mathrm{y})=$ true	Proves hypothesis

펴N Predicate Logic (cont'd)

- Specifies a proposition (and optionally a domain), for example:
- $\exists x \in N,-10<x<-5 \quad / /$ False, since no negative x
- $\forall x \in N, x>-1 \quad / /$ True, since no negative x
- (17) Must be able to find examples
- to prove \exists, e.g. $\exists x \in Z,-1<x<1, x=0$
- (18) Must be able to find counterexamples
- to disprove \forall, e.g. $\forall x \in Z, x>-1, x=-2$

CS160 - Spring Semester 2014

	Contradiction Pro when $5 x y$ is even,	(21): Show that hen \boldsymbol{x} or \boldsymbol{y} is even
	Step	Reason
1.	$\mathrm{E}(5 \mathrm{xy}) \rightarrow \mathrm{E}(\mathrm{x}) \vee \mathrm{E}(\mathrm{y})$	Hypothesis
2.	$E(5 x y) \wedge \neg(E(x) \vee E(y))$	Contradiction
3.	$E(5 x y) \wedge O(x) \wedge O(y))$	De Morgan's
4.	$\mathrm{O}(\mathrm{x}) \rightarrow \mathrm{x}=2 \mathrm{j}+1, \mathrm{O}(\mathrm{y}) \rightarrow \mathrm{y}=2 \mathrm{k}+1$	Odd Definition
5.	$E(5(2 j+1)(2 k+1))$	Substitution
6.	$\mathrm{E}(20 \mathrm{jk}+10 \mathrm{j}+10 \mathrm{k}+5)$	Algebra
7.	$E(2(10 j k+5 j+5 k+2)+1)=$ false	Odd Definition!
8.	$\therefore \mathrm{E}(5 \mathrm{xy}) \mathrm{=}$ false	Disproves Contradiction
CS160- Spring Semester 2014		

Proof by Cases $(22):$ Given two real
numbers x and $y,\|x y\|=\|x\|\|y\|$
:---
and $\|x\|=x$ and $\|y\|=y$ so $\|x\|\|y\|=x y$
Case $2: x<0, y>=0, x y<0$ so $\|x y\|=-x y$
and $\|x\|=-x$ and $\|y\|=y$ so $\|x\|\|y\|=-x y$
Case $3: x>=0, y<0, x y<0$ so $\|x y\|=-x y$
and $\|x\|=x$ and $\|y\|=-y$ so $\|x\|\|y\|=-x y$
Case 4: $x<0, y<0, x y>=0$ so $\|x y\|=x y$
and $\|x\|=-x$ and $\|y\|=-y$ so $\|x\|\|y\|=x y$

Pre and Post Conditions (23)

public static int foo(int x) \{
// Precondition: $-4<=x<=3$
return ($x^{*} x+2$ * $x-5$);
// Postcondition -6 <= return value <= 10
\}
$f(-4)=3, f(-3)=-2, f(-2)=-5, f(-1)=-6$
$f(0)=-5, f(1)=-2, f(2)=3, f(3)=10$

Pre and Post Conditions (24)
public static int foo(int x) \{
// Precondition: $-4<=x<=2$
return ($\mathrm{x}^{*} \mathrm{x}+2{ }^{*} \mathrm{x}-5$);
// Postcondition -6 <= return <= 3
\}
$f(-5)=10, f(-4)=3, f(-3)=-2, f(-2)=-5$,
$f(-1)=-6, f(0)=-5, f(1)=-2, f(2)=3, f(3)=10$

Loop Invariants (25)	
$\begin{aligned} & \text { int } x=1, y=2, z=-5 \text {; } \\ & \text { while }(x<=5)\{ \\ & \quad z+=y ; \\ & \quad x++; \end{aligned}$	
	4

