Discrete Math Review (Rosen, Chapter 1.1 – 1.7, 5.5)

TOPICS

- Sets and Functions
- Propositional and Predicate Logic
- Logical Operators and Truth Tables
- Logical Equivalences and Inference Rules
 Proof Techniques
- Program Correctness

Discrete Math Review

- What you should know about discrete math before the next midterm!
- Less theory, more problem solving, will be repeated in recitation and homework.

CS160 - Spring Semester 2014

Set Definitions	Set Definitions, continued
An unordered collection of objects (elements) Membership: $1 \in \{1, 2, 3, 4, 5\}$, $6 \notin \{1, 2, 3\}$ Builder: $O = \{x \in N \mid x \text{ is odd and } x < 10\}$ Equality: $A = B$ if exactly the same elements Union: $A \cup B$, set of elements in A or B Intersection: $A \cap B$, set of elements in A and B Difference: $A - B$, set of elements in A but not B Complement: \overline{A} , set of elements not in A but in U	• Empty Set: \emptyset , or { }, subset of all sets • Cardinality: V = {a, e, i, o, u}, so V = 5 • Subset: A \subseteq B, all elements in A are in B • Proper Subset: A \subset B, same as subset but A \neq B • Power Set: P(A), set of all subsets, P(A) = 2 ^A • Tuples: order matters, duplicates ok, (1, 3, 2) • Cartesian Product: A x B, A x B = A x B • Identities: A \cup { } = A, A \cap { } = { }
CS160 - Spring Semester 2014 3	CS160 - Spring Semester 2014 4

Daserie Daserie Agrication	Сс	ompo	ound	Propo	sitions	
 Propositions and operators can be combined into compound propositions. (6) You should be able to make a truth table for any compound proposition: 						
	p	q	- <i>p</i>	$p \rightarrow q$	¬p ∧ (p→q)	
	Т	Т	F	Т	F	
	Т	F	F	F	F	
	F	Т	Т	Т	Т	
	F	F	Т	Т	Т	
			CS160 - S	pring Semester 20	14	12

Anna a the second	Logical Equivaler	nces: Definition	
	Certain propositions are they share exactly the sa For example:	equivalent (meanin ime truth values):	g
	$\neg (p \land q) \equiv \neg p \lor \neg q$ $(p \land T) \equiv p$	De Morgan's Identity Law	
	(p ∧ ¬p) ≡ F	Negation Law	
	CS160 - Spring Semester	r 2014	15

Dist	Access to Access	Lo	ogica	al Eq	uivalen	ces: Trut	th Tables
	 (9) And you should know how to prove logical equivalence with a truth table For example: ¬(p ∧ q) = ¬p ∨ ¬q 						
	р	q	¬p	$\neg q$	(p ∧ q)	¬(p ∧ q)	¬p v ¬q
	Т	Т	F	F	Т	F	F
	Т	F	F	Т	F	Т	Т
	F	Т	Т	F	F	Т	Т
	F	FTTF TT					
	CS160 - Spring Semester 2014 16						

Logic	al Equivaler	nces (Rosen)
Logical Equivalence: Idempotent Laws $p \lor p \equiv p$ $p \land p \equiv p$	DeMorgan's Laws $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	Distributive Laws $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Double Negation $\neg(\neg p) \equiv p$	Absorption Laws $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Associative Laws $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$
Commutative Laws $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Implication Laws $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$	Biconditional Laws $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$
	CS160 - Spring Semeste	er 2014 18

Method 2: Proof using Rules of Inference

- A *rule of inference* is a proven relation: when the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match an axiom to the LHS by substituting propositions, we can assert the (substituted) RHS

CS160 - Spring Semester 2014

Apply modus ponens
Conclude s

Applying rules of inference

• Read as "*p* and $p \rightarrow q$, therefore q"

CS160 - Spring Semester 2014

• This rule has a name: *modus ponens*

• Example rule: $p, p \rightarrow q \therefore q$

• If you have axioms $r, r \rightarrow s$

Substitute *r* for *p*, *s* for *q*

Rules Rules of Inference	of Inference (Rosen)
Modus Ponens	Modus Tollens	Hypothetical Syllogism
p	$\neg q$	$p \rightarrow q$
$p \rightarrow q$	$p \rightarrow q$	$q \rightarrow r$
9	$\neg p$	$p \rightarrow r$
Addition	Resolution	Disjunctive Syllogism
p	pvq	$p \lor q$
$\overline{p \vee q}$	$\neg p \lor r$	<u>¬p</u>
	$q \vee r$	q
Simplification	Conjunction	
$p \land q$	p	
p	$\frac{q}{p \wedge q}$	
	CS160 - Spring Semester 2014	29

A Simple P

A Simple Proof: Problem Statement

Example of a complete proof using inference rules, from English to propositional logic and back:

- If you don't go to the store, then you cannot not cook dinner. (axiom)
- If you cannot cook dinner or go out, you will be hungry tonight. (axiom)
- You are not hungry tonight, and you didn't go to the store. (axiom)
- You must have gone out to dinner. (conclusion)
 CS180 Spring Semester 2014 30

A Simple	Proof: Applying Inferen	се
1. $\neg p \rightarrow \neg q$	Axiom	
2. $\neg(q \lor r) \rightarrow s$	Axiom	
3. ¬S	Axiom	
4 . ¬p	Axiom	
5. ¬q	Modus Ponens (1, 4)	
<mark>6</mark> . qvr	Modus Tollens (2, 3)	
7. r	Disjunctive Syllogism (5	, 6)
CONCLUSION: Yo	u must have gone out to dinne	er!
	CS160 - Spring Semester 2014	32

- Universal ∀, "for all"
- Existential 3, "there exists"
- (16) You should able to translate between predicate logic and English, in both directions.

CS160 - Spring Semester 2014

33

• to disprove \forall , e.g. $\forall x \in Z$, x > -1, x = -2

CS160 - Spring Semester 2014

Discrete Recenter Applications	$\frac{\text{Direct Proof (19): Show that } 5x + 3y \text{ is even when } x \text{ and } y \text{ are odd integers.}}$				
	Step	Reason			
1.	$O(x) \ \land \ O(y) \to E(5x + 3y)$	Hypothesis			
2.	$O(x) \rightarrow x = 2j+1, O(y) \rightarrow y = 2k+1$	Odd Definition			
3.	E(5(2j + 1) + 3(2k + 1))	Substitution			
4.	E(10j + 5 + 6k + 3)	Algebra			
5.	E(2(5j + 3k + 4)) = true	Even Definition			
6.	∴ E(5x + 3y) = true	Proves hypothesis			
CS160 - Spring Semester 2014 35					

alks kes	when 5xy is even, t	<u>of (</u> 20): Show that then x or y is ever
	Step	Reason
1.	$E(5xy) \rightarrow E(x) V E(y)$	Hypothesis
2.	¬(E(x) √ E(y)) → ¬E(5xy)	Contrapositive
3.	O(x) ∕ O(y) → O(5xy)	De Morgan's
4.	$O(x) \rightarrow x = 2j+1, O(y) \rightarrow y = 2k+1$	Odd Definition
5.	O(5(2j + 1)(2k + 1))	Substitution
6.	O(20jk + 10j + 10k + 5)	Algebra
7.	O(2(10jk + 5j + 5k + 2) + 1) = true	Odd Definition
Q	∴O(5xy) = true	Proves Contrapositive

Encrete Mathematics Applications	<u>Contradiction Proof (21)</u> : Show that when 5xy is even, then x or y is even				
	Step	Reason			
1.	$E(5xy) \rightarrow E(x) V E(y)$	Hypothesis			
2.	E(5xy) ∧ ¬(E(x) ∨ E(y))	Contradiction			
3.	E(5xy) / O(x) / O(y))	De Morgan's			
4.	$O(x) \to x = \ 2j{+}1, \ O(y) \to y = 2k{+}1$	Odd Definition			
5.	E(5(2j + 1)(2k + 1))	Substitution			
6.	E(20jk + 10j + 10k + 5)	Algebra			
7.	E(2(10jk + 5j + 5k + 2) + 1) = false	Odd Definition!			
8.	∴ E(5xy) = false	Disproves Contradiction			
	CS160 - Spring Semeste	r 2014 37			

Case 4: x<0, y<0, xy>=0 so |xy|=xy and |x|=-x and |y|=-y so |x||y|=xy

CS160 - Spring Semester 2014

Arristante Arristante	Pre and Post Conditions (23)	
publ	ic static int foo(int x) {	
	Precondition: -4 <= x <= 3	
re	eturn (x * x + 2 * x - 5);	
	Postcondition -6 <= return value <= 10	
}		
f(-4)	= 3, f(-3) = -2, f(-2) = -5, f(-1) = -6	
f(0)	= -5, f(1) = -2, f(2) = 3, f(3) = 10	
	CS160 - Spring Semester 2014	39

Beenth Reserve Reported Repore	Pre and Post Conditions (24)	
ا اماریمر		
pubi	IC Static int foo(int x) {	
	Precondition: -4 <= x <= 2	
re	eturn (x * x + 2 * x - 5);	
	Postcondition -6 <= return <= 3	
}		
f(-5)	= 10, f(-4) = 3, f(-3) = -2, f(-2) = -5,	
f(-1)	= -6, $f(0) = -5$, $f(1) = -2$, $f(2) = 3$, $f(3) = 1$	0
	CS160 - Spring Semester 2014	40

