=> %) Learning objectives
——— S
I I
* Using 2D arrays
2D Arrays . zii(})]rgg)sosiﬁon of a solution into objects and
(Savitch, Chapter 7.5)
TOPICS
* Multidimensional Arrays
* 2D Array Allocation
* 2D Array Initialization
* TicTacToe Game
Declaring and initializing 2D .
t(g) & & t(g) Printing 2D arrays
—— arrays 4 ——

// setting up a 2D array
final int M=3, N=4;
int [][] matrix = new int [M][N]; 3-
for(int i=0; i<M; i++) {
for (int j=0; j<N; j++) { ‘

matrix[i][j] = fileScanner.nextiInt();

A
| |

o il a2 e

20 21 22 23

}

// printing from a 2D array
final int M=100, N=200;
int [][] matrix = new int [M][N];
for(int i=0; i<M; i++) {
for (int j=0; j<N; j++) {
System.out.print(matrix[i][j] + “ “);
}

System.out.printin();

S
e

Adding two matrices

// settinlg up a 2D array
final int M=100, N=200;
int []1[1 m1 = new int [M][N]; 20 2,
int [][] m2 = new int [M][N];
// First write code to initialize the matrices
int [1[] m3 = new int[M][N];
for(int i=0; i<M; i++) {

for (int j=0; j<N; j++) {

m1 m2
10 11 1,2 13 4+ 1,0 11 1,2 13

22 23

1 and/m2 as an exercise

+

m3
\;1 12 [48
20 21 22 23

m3(i][j] = m1{i](i] + m2i]{];

The numbers in each cell

g) More on 2D arrays

I

e int[][] matrix = new int[3][4];
* What is matrix.length? It is 3
¢ What is matrix[0].length? It is 4

— So is matrix[1].length, matrix[2].length, and matrix[3].length
* You can access a particular row using matrix[i] where i refers

to the row number between 0 and 2

¢ Each row is a one-dimensional array
* You cannot access a column like that ®
* Exercises:

— Write code that subtracts one matrix from another

— Write code that transposes the given matrix

} o rgpresent the indices ST ’
‘;.(S) Review (Java) ‘;.(g Programming
= =

1
Assignments & expressions
Sequential control: if & switch
Looping control: while, for, do
Organization: classes & methods
Tools: Eclipse & debugging

Why? So you can program...

CS 160, Spring Semester 2014 7

e ... but programming isn’ t about syntax
— You can program in many languages

* Programming is about problem solving
— Problem definition/refinement
— Problem decomposition
— Managing complexity

CS 160, Spring Semester 2014 8

g) Challenge Problem

* So here is a problem to be worked through
together:

— Write a person versus computer TicTacToe game.

g) Challenge Problem

* Write a TicTacToe game
— Machine goes first, plays ‘X’
— Print the board before every user move
— User plays ‘O’, specifies moves by coordinate
*0..2,0..2.
— Machine selects random, legal moves

— Program knows when game is over

= Decomposition

* Game board
— State
* Player moves
— User I/O
¢ Computer moves
— Select random, legal moves
* Manage game
— Alternate turns until end

CS 160, Spring Semester 2014

g) Further Decomposition

|
* Game board
— Maintain board state
* 2D array makes sense
— Mark board square
* Add an X or ‘O’ at row, col
* Check that row, col are empty
— Print entire board
* Show the state of the board
— Detect game over

CS 160, Spring Semester 2014

= Code (Part 1a)

* Focusing on the game state:
— Board state needed by multiple subtasks
— Good candidate for an instance variable

* Initialize the board : method
* Mark a square : method
* Print the board : method
* Detect game over : methods

«

> Public vs Private

e

. V{/hat is the difference between public & private
variables/methods?
* If something is public, it can be accessed by other
objects
— Think of the String object
— If it’s length() method weren’t public, you couldn’t use it!
* If something is private, only methods of the same
class can access it

— Note that if something is public, it can be changed at any
point (more error checking!)

* General rule: top-level methods should be public,
everything else should be private

CS 160, Spring Semester 2014

«g) Code (Part 1b)

* markSquare() & printBoard() are straightforward
— Note error checking, only valid moves allowed

— print just iterates the 2D array
* What about gameOver()?

— When is a game of tic-tac-toe over?
* When thereisarowof X’ sorQ’s...
e ..oracolumn
* ...oradiagonal
« ...or the board is full (tie game)

— So may require decomposition
* Leading to more methods...

CS 160, Spring Semester 2014

Stop!

&
=2
= Do not pass go or collect $200...

* DO NOT write the whole program at all once
— Too hard to debug that way
— Test each piece separately

* Write a temporary main function

— Have it initialize the board, mark a square, print the
result. Does it work?

— Have it test end of game scenarios too.
— Then comment out the test code
— It’s not part of the final product.

* Think of it like scaffolding...

= Code (Part 2)

* OK, now we need to get moves from the user
— Print a prompt
— Read in coordinates
— Call markSquare()

* Probably doesn’t need further decomposition

¢ But does need to be tested!

g) Code (Part 3)

* Machine move: picked at random
— Java has a Random class
* Generates a stream of pseudo-random numbers
— Pick a row and col at random
* Between 0 and 2
— Check if legal. If not, pick another
— What will happen if board is full?

* Don’t forget testing....

«g) Initialization
—

I
* Problem: which method allocates the board?
— How about Scanner and Random?
* We want instance variables initialized before any
other method is called
— But we haven’t decided which method will be called first
— Even if we had, might change when the code is modified
* Solution: A constructor is a method that is called by
new when an object is created.

g) Constructors
—

1
* The syntax for constructors is unique

— Constructors take parameters, but they never
return a value

— The constructor name is always the same as the
class name

— The default constructor has no parameters, but
we can add them

— The constructor is generally used to initialize class
instance variables

g) Code (Part 4) g) Eclipse Demo

1 1
. , i | . .
Now we’ve done everything but play the game! « Write the program for TicTacToe
* The game is the main function * Will be posted on the course website
— What should happen when the class is executed
— Hence, public static void main(String[] args)
* The game depends on instance variables, so main
needs to instantiate TicTacToe

CS 160, Spring Semester 2014

CS 160, Spring Semester 2014

