::ff(/ ::__%) Methods

I I

¢ A method (a.k.a. function, procedure, routine) is
. a piece of code that performs a useful action
Deﬂmng Classes and Methods — You defined a method called ‘main’.

(Savitch, Chapter 5) — When you run a Java program, it always begins by
running the main method.

TOPICS

* A method can also return a value to the program
« Java methods that called them
» Java objects — More details in a minute...

« Static keyword
* Parameter passing
* Constructors

CS 160 - Spring Semester 2014

g) Terminology

]
* Aclass is a data type

— Combines variables with methods
* An object is an instance of a class

— Must be explicitly created in program

* Creating an object is called instantiation

In our recitations and You also define a method called — This involves use of new operator
assignments, you define ‘main’ that takes an array of
classes (e.g. P1, R1). Strings as its arguments

CS 160 - Spring Semester 2014

‘g) Data inside objects and classes

e

. Tfl1ey are of two types
— They may belong to the class (and will take the
same value for all the objects)
— They may belong to the object (and can take
different values for each object)
— Objects of the former type must be marked as
static to allow the compiler to differentiate

g) Another mystery: static

* Methods are called with an instantiated object
of the type class:

— The notation is objectname.method()

— You must have a String variable called word to call word.length()
— The length() method can access data in the instance it is called on
— Such methods are called instance methods

* Exception: static methods can be called with
only the class name, i.e. no instance:

— The notation is classname.method()

— Not all methods need to access data specific to objects

— Static declares that a method will not access instance data
— Static methods may access class data, but not instance data

«g) public static void main g Static methods

]
* Remember that magic incantation at the start
of your program?
— main is the name of your method
* The main method is called by the OS at program startup.

— void says that the main function does not return a value
* What would the OS do with a return value?

— static says that main will not access instance variables
* Because the OS needs to call it without creating a class instance

— public is destined to remain a mystery just a bit longer.

CS 160 - Spring Semester 2014

* ‘main’ is an example of a static method

* It can only access class variables (or static
variables)

* Therefore ‘main’ cannot access instance
variables. To use instance variables, we will
have main create an instance of its class...

* But first, let’ s see some static methods

— First we will see static methods that don’ t share data
— Then we will see static methods that can share data

CS 160 - Spring Semester 2014

({ Communication between
=2 .
<_| calling and called methods

1
* Method parameters:

— Method declares a parameter “formal parameter” to
state what can be provided by the calling program.

public static String reverseCase (String s1)
— Indicates the calling program must specify a String

public static int returnRandom()
— Indicates the calling program specifies no parameters

CS 160 - Spring Semester 2014

({ Communication between
=2 .
<_| calling and called methods

1
* Method return type and value:
— Can return void (i.e., nothing)

— Can return a type (e.g., int, char, String, etc)

* If a type is returned, there must be a return statement in
the method body

* There must be a return for each reachable part of the code

— Return type must match in calling program

CS 160 - Spring Semester 2014

((Communication between
= .
= calling and called methods

]
public String reverseCase (String s1)

public int returnRandom()

* Calling method:

— Supplies arguments that must match the type of the
parameters in the method declaration

— Uses the return value to do something
— Return value must match type of variable

System.out.print(reverseCase(strname));
int i = returnRandom();

60 - Spring Semester 2014

«g) Caution: Pass by value

. Wl!1at do you expect this to print?

public class PassByValue {
public static void main(String[] args) {
int num = 100;
increment(num);
System.out.printIn("After calling increment, num is " + num);
}
public static void increment(int n) { n++; }
}
* The value of the argument is copied. Any changes to the copy
are not reflected in the original argument.

CS 160 - Spring Semester 2014

g) Caution: Pass by value

—

. Anlother example
public class PassByValueString {
public static void main(String[] args) {
String word = new String("Good morning");
changeGreeting(word);
System.out.printIn("After calling changeGreeting, word is " + word);

public static void changeGreeting(String w) {
w = new String("Good night");

}
* Greeting remains unchanged
CS160-S

- Spring Semester 2014

‘ﬁ) Incorrect Swapping

—

public class Swapper {
public static void main(String[] args) {
String s1 = "Martin";
String s2 = "Scorcese";
swap(sl, s2);
System.out.printIn(“main: After swap, s1=" +s1+ " and s2=" +s2);
}
public static void swap(String x, String y) {
System.out.printin(“swap: Before swap, x=" +x+ “ and y=" +y);
String temp = x; x =y; y = temp;
System.out.printin(“swap: After swap, x=" +x+ " and y=" +y);
}
}
* Nothing gets swapped!

0 - Spring Semester 2014

Use methods for subtasks

S,
—

I
* The general rule is:

— Break subtasks into tasks until tasks are trivial
— Every subtask is a method
— Some methods (subtasks) may call others

g) Objects

—

]
* An objectinlJavais

— A set of methods (think: functions)
— A set of members (think: variables)

* Fancy CS buzzwords:
— Objects encapsulate data and functionality
— Objects encapsulate behavior and state

= Object Example: String

1
* You have been using objects all along

« String is an example of an object in Java
— The characters are the data in the object
— Methods include:
« length() : how long is the string?
 charAt(int): what character is at a given position?
* Syntax:
— You call an object’ s method using “.” and args ()
* E.g.: word.charAt(5); word.length()

= Another example: Scanner

* Scanner is a more complex object
* Its data is a stream of characters
— May come from a file
— May come from the terminal (a stream)
— May come from a string
* Its actions are to parse and interpret the
characters
next() returns the next valid string
— nextInt() returns the next valid integer
nextDouble() returns the next valid double
— ... and there are many more (see on-line Java

reference)
« ¢ .
=> Classes as data types = Object Instances
—— ——

. IClasses are data types (just like primitives):
int counter;
String word;
MyClass example;
* By convention, class names are capitalized
* Variables with object types still need names
— E.g. counter, word, and example above
* Variables cannot be used until they are assigned
values
— True for both primitive and object types

CS 160 - Spring Semester 2014

]
* The value assigned to a variable of an
object type is an object instance

* For example:
String word = “the ”;
is the same as
String word = new String(“the”);
* word is a variable of type String.
 String(“the”) creates an instance of String

CS 160 - Spring Semester 2014

g) Object constructors

1
* All Object instances are created using the

keyword new.
String s1 = new String(“example”);

* This creates a new string and calls the string
constructor passing it the value “example”

CS 160 - Spring Semester 2014

g) Object constructors

1
* When you create an object, you do so by

calling constructor method.

* The constructor method’ s name is the same
as the class.

* The constructor method is used to initialize
the state of the object (i.e. initialize the
variables)

CS 160 - Spring Semester 2014

Scanner is an object class
that parses character
streams so that they can be specific Scanner that reads
easily read as strings, ints from System.in

or other data types

Initializes terminal to be a

Declares a variable called
‘terminal’ of type Scanner

CS 160 - Spring Semester 2014

> Methods inside a class

* Order of writing methods is arbitrary
— Generally constructors are written first

* Shared data problem: what if two methods need to
share data?

— One subtask reads input and creates a string of words

— Another subtask checks each word in the string and does
something with it

CS 160 - Spring Semester 2014 24

g) Solution #1

—

. I\/Ilethodl for subtask 1 returns a value,v
* Method2 for subtask 2 uses the value,v
* Example:
public static void main(String[] args) {
String wordList = readlnput();
processWords(wordList);

g) Solution #2

———
. Ljse instance variables
— Define String wordList; as an instance variable
— Any method of a class can access its variables
« readlnput() can create & write the string
* processWords() can access it

}

((Simple example
t._g) Data Variables in Classes t._g)
— —

I
* How does a method access data in a class?

— Every method can access the class instance it is called on
* Think of word.length(); it can access the data in the string ‘word’
* Think of the class instance as a ‘hidden’ argument to the method

— Class variables look like any other variables in the code of

a method

* They do not need to be ‘re-declared’

I
public class Course {
String department, number;

public Course(String dept, String num) {
department = dept;
number = num;
}
public String getFullName(){
return new String(department +
}

public static void main(String[] args) {

wn

+ number);

Course c1 = new Course("CS", "160");
System.out.printin(cl.getFullName());

g) Classes

1
* Classes are the basis of object-oriented (OO)

programming.
* They encapsulate functionality to form
powerful abstractions of real world objects.

* What can classes be used for? Classes have
many different uses, for example:

= Data Structures
= Code Libraries

= Java Programs
= Complex Objects

CS 160 - Spring Semester 2014

g) Classes as Data Structures

1
* Just like a struct in C and C++, for example:

public class Student {
public String firstName;
public String lastName;
public Date birthDate;
public Address homeAddress:
public double gradePointAverage;

CS 160 - Spring Semester 2014

«g) Classes as Code Libraries

I
* Just like a library in a procedural language like

C or C++, for example:

public class Math {
public static final double PT = 3.14159;
public static double sin(double a) {...}
public static double exp(double a) {..}
public static double log(double a) {..}
public static double sqrt(double a) {..}

CS 16! ester 2014

«g) Classes as Small Programs
——

]
* Just like a program in a procedural language

like C or C++, for example:

public class MySmallProgram{
public static void main(String args[]) {
System.out.printin(*Hello, World!");

g) Classes as (Large) Programs

1
* Just like a program in a procedural language

like C or C++, for example:

public class MyLargeProgram{
// lots of data
public static void main(String args[]) {
// lots of code

}
// lots of methods

g) Classes as Complex Objects

1
* No comparable example in a procedural

language like C or Pascal!

public class MyClass {
// lots of class variables (static)
// lots of instance variables (non-static)
// no main method
// lots of class methods (static)
// lots of instance methods (non-static)

CS 160 - Spring Semester 2014 34

‘_(g) Using Different Class Types

e

// Dla’ra Structure

Student students[] = new Student[100];
students[0].firstName = “Christopher";
// Code Library
System.out.println(Math.sin(1.0));

// Java Programs

$ java MySmallProgram

// Complex Objects

MyClass myClass = hew MyClass();
myClass.initialize();

CS 160 - Spring Semester 2014

