Prove about Programs

- Why make you study logic?
- Why make you do proofs?
- Because we want to prove properties of programs:
 - In particular, we want to prove properties of variables at specific points in a program.
 - For example, we may want prove that a program segment or method gets the right answer.
Program Verification

- We consider a program to be correct if it produces the expected output for all possible inputs.
- Domain of input values can be very large, how many possible values of an integer? \(2^{32}\)
  ```c
  int divide(int operand1, int operand2) {
    return operand1 / operand2;
  }
  ```
- \(2^{32} \times 2^{32} = 2^{64}\), a large number, so we clearly cannot test exhaustively!
- Instead we formally specify program behavior, then use logic techniques to infer (prove) program correctness.

Program Correctness Proofs

- Part 1 - Prove program produces correct answer when (if) it terminates.
- Part 2 - Prove that the program does indeed terminate at some point.
- We can only Part 1, because Part 2 has been proven to be undecidable:
 - Thus we try to prove that a method is correct, assuming that it terminates (partial correctness).

Predicate Logic and Programs

- Variables in programs are like variables in predicate logic:
 - They have a domain of discourse (data type)
 - They have values (drawn from the data type)
- Variables in programs are different from variables in predicate logic:
 - Their values change over time (i.e., locations in the program)
 - Associate the predicate with specific program points
 - Immediately before or after a statement

Assertions

- Two parts:
 - **Initial Assertion**: a statement of what must be true about the input values or values of variables at the beginning of the program segment
 - For example: Method that determines the square root of a number requires the input (parameters) to be \(\geq 0\)
 - **Final Assertion**: a statement of what must be true about the output values or values of variables at the end of the program segment
 - For example: Can we specify that the output or result is exactly correct after a call to the method?
Pre and Post Conditions

- **Initial Assertion**: sometimes called the pre-condition
- **Final Assertion**: sometimes called the post-condition
- Note: these assertions can be represented as propositions or predicates. For simplicity, we will write them generally as propositions.

Hoare Triple

- “A program, or program segment, S, is said to be partially correct with respect to the initial assertion (pre-condition) p and the final assertion (post-condition) q, if, whenever p is true for the input values of S, and if S terminates, then q is true for the output values of $S.”$ – [Rosen 7th edition, p. 372]
- Notation: $p \{S\} q$

Program Verification

Example #1: Assignment Statements

- Assume that our proof system already includes rules of arithmetic, and theorems about divisibility...
- Consider the following code:

  ```
  y = 2; 
  z = x + y; 
  ```

 - Pre-condition: $p(x), x = 1$
 - Post-condition: $q(z), z = 3$

- Prove that the program segment:

  ```
  y = 2; 
  z = x + y; 
  ```

 - is correct with respect to:
 - pre-condition: $x = 1$
 - post-condition: $z = 3$
 - Suppose $x = 1$ is true as program begins:
 - Then y is assigned the value of 2
 - Then z is assigned the value of $x + y = 1 + 2 = 3$
 - Thus, the program segment is correct with regards to the pre-condition that $x = 1$ and post-condition $z = 3$.

Program Verification
Example #2: Assignment Statements

- Prove that the program segment:
 \[
 y = z; \\
 z = x \times y;
 \]
- Is correct with respect to:
 - pre-condition: \(x \geq 1\)
 - post-condition: \(z \geq 2\)
- Suppose \(y \geq 1\) true as program begins:
 - Then \(x\) is assigned the value of 2
 - Then \(z\) is assigned the value of \(x \times y = 2 \times (y \geq 1)\), which makes \(z \geq 2\)
- Thus, the program segment is correct for pre-condition \(y \geq 1\) and post-condition \(z \geq 2\).

Program Verification
Example #3: Assignment Statements

- Prove that the program segment, given integer variables:
 \[
 y = x \times x + 2 \times x - 5;
 \]
- Is correct with respect to:
 - pre-condition: \(-4 \leq x \leq 1\), and post-condition: \(-6 \leq y \leq 3\)
- Suppose \(-4 \leq x \leq 3\) as the program begins:
 - If \(x = -4\) then \(y\) is assigned \((-4) \times (-4) + 2 \times (-4) - 5 = 3\)
 - If \(x = -3\) then \(y\) is assigned \((-3) \times (-3) + 2 \times (-3) - 5 = -2\)
 - If \(x = -2\) then \(y\) is assigned \((-2) \times (-2) + 2 \times (-2) - 5 = -5\)
 - If \(x = -1\) then \(y\) is assigned \((-1) \times (-1) + 2 \times (-1) - 5 = -6\)
 - If \(x = 0\) then \(y\) is assigned \((0) \times (0) + 2 \times (0) - 5 = -5\)
 - If \(x = 1\) then \(y\) is assigned \((1) \times (1) + 2 \times (1) - 5 = -2\)
- Thus, program segment is correct post-condition \(-6 \leq y \leq 3\), or more precisely \(y\) belongs to the set \{-6, -5, -2, 3\}.

Program Verification
Example #4: Assignment Statements

- Given the following segment, \(x\) and \(y\) are integer variables:
 \[
 \text{float } x, y; \\
 \text{// code to initialize } x \\
 y = x \times x - 2 \times x - 5; \\
 \]
- Suppose \(-3 \leq x \leq 3\) as the program begins:
 - If \(x = -2\) then \(y\) is assigned \((-2) \times (-2) - 3 \times (-2) + 4 = 14\)
 - If \(x = -1\) then \(y\) is assigned \((-1) \times (-1) - 3 \times (-1) + 4 = 8\)
 - If \(x = 0\) then \(y\) is assigned \((0) \times (0) - 3 \times (0) + 4 = 4\)
 - If \(x = 1\) then \(y\) is assigned \((1) \times (1) - 3 \times (1) + 4 = 2\)
 - If \(x = 2\) then \(y\) is assigned \((2) \times (2) - 3 \times (2) + 4 = 2\)
 - If \(x = 3\) then \(y\) is assigned \((3) \times (3) - 3 \times (3) + 4 = 4\)
- Thus, the post-condition for \(y\) is \(2 \leq y \leq 14\).
Redo with floating point

Example #3: Assignment Statements

• Given that the polynomial below is an increasing function in the interval \([-1, 4]\), prove conditions of the program segment:

 \[f(x) = x^2 + 2x - 5 \]

 - Pre-condition: \(-1 \leq x \leq 4\)
 - Post-condition: ?? \leq y \leq ??

• Without executing the assignment we know domain of \(x\), so we can prove (using math) the range of \(y\) values.

• Q: What is the range of values of \(f(x)= x^2 + 2x - 5\) that satisfy \(f(-1) \leq f(x) \leq f(4)\) for values of \(x\) in the interval \([-1, 4]??

• A: We can prove that, \(-2 \leq y \leq 3\) because \(f(-1)=2\) and \(f(4)=3\).

General Rule for Assignments

• To prove the Hoare triple:

 \[p \{ v = expression \} q \]

 - note that \(p\) and \(q\) are predicates involving program variables (usually \(q\) involves \(v\))

• We first replace occurrences of \(v\) in \(q\) by the right hand side expression (\(\text{expression}\))

• Then we derive this modified \(q\) from \(p\) using our rules of inference

• Sometimes we use common sense, e.g., derive first substitute later, as in previous.

Rule 1: Composition Rule

• Once we prove correctness of program segments, we can combine the proofs together to prove correctness of an entire program.

 \(p \{ S1 \} \rightarrow p \{ S2 \} \)

• This is similar to the hypothetical syllogism inference rule.

Program Verification

Example #1: Composition Rule

• Prove that the program segment (swap):

 \[
 t = x; \\
 x = y; \\
 y = t;
 \]

 • is correct with respect to

 pre-condition: \(x = 7, y = 5\)
 post-condition: \(x = 5, y = 7\)
Program Verification

Example #1 (cont.): Composition Rule

- Program segment: \(t = x; \ x = y; \ y = t; \)
- Suppose \(x = 7 \) and \(y = 5 \) is true as program begins:
 - // Pre-condition: \(x = 7, \ y = 5 \)
 - \(t = x; \)
 - // Post-condition: \(t = 7, \ x = 7, \ y = 5 \)
 - // Pre-condition: \(t = 7, \ x = 7, \ y = 5 \)
 - \(x = y; \)
 - // Post-condition: \(t = 7, \ x = 5, \ y = 5 \)
 - // Pre-condition: \(t = 7, \ x = 5, \ y = 5 \)
 - \(y = t; \)
 - // Post-condition: \(t = 7, \ x = 5, \ y = 7 \)
- The program segment is correct with regards to the pre-condition \(x = 7 \) and \(y = 5 \) and post-condition \(x = 5 \) and \(y = 7 \).

Rule 2: Conditional Statements

- Given
 - if (c) statement;
 - With pre-condition: \(p \) and post-condition: \(q \)
- Must show that:
 - Case 1: \(p \&\& \ c (S) \ q \): when \(p \) is true and \(c \), the condition is true then \(q \) (post-condition) can be derived, when \(S \) (statement) terminates,
 AND ALSO THAT
 - Case 2: \(p \&\& \ !c \rightarrow q \): when \(p \) is true and \(c \) is false, then \(q \) is true (\(S \) does not execute, so we must show that \(q \) follows directly from \(p \) and \(!c \))

Conditional Rule: Example #1

- Verify that the program segment: \(\text{if } (x > y) \ y = x; \)
- Is correct with respect to pre-condition T (program state is correct when entering segment) and the post-condition that \(y \geq x \).
- Consider the two cases...
 1. Condition \((x > y) \) is true, then \(y = x \)
 2. Condition \((x > y) \) is false, then that means \(y > x \)
- Thus, if pre-condition is true, then \(y = x \) or \(y > x \) which means that the post-condition that \(y > x \) is true.

Conditional Rule: Example #2

- Verify that the program segment: \(\text{if } (x \% 2 = 1) \ x = x + 1; \)
- Is correct with respect to pre-condition T and the post-condition that \(x \) is even.
- Consider the two cases...
 1. Condition \((x \% 2 \text{ equals } 1) \) is true, then \(x \text{ is odd} \). If \(x \) is odd, then adding 1 makes \(x \) even.
 2. Condition \((x \% 2 \text{ equals } 1) \) is false, then \(x \) is already even, and remains even.
- Thus, if pre-condition is true, then either \(x \text{ is even} \) or \(x \text{ is even} \), so the post-condition that \(x \text{ is even} \) is true.
Rule 2a: Conditional with Else

if (condition)
 S1;
else
 S2;
• Must show that
 – Case 1: when p (precondition) is true and condition is true then q (postcondition) is true, when S1 (statement) terminates
 OR
 – Case 2: when p is true and condition is false, then q is true, when S2 (statement) terminates

Conditional Rule: Example #3

• Verify that the program segment:


  ```
  if (x < 0) abs = -x;
  else abs = x;
  ```

• Is correct with respect to pre-condition T and post-condition that abs is the absolute value of x.
• Consider the two cases...
 1. Condition (x < 0) is true, x is negative. Assigning abs the negative of a negative means abs is the absolute value of x.
 2. Condition (x < 0) is false, x is positive. Assigning abs a positive number means abs is the absolute value of x.
• Thus, if pre-condition is true, then the post-condition that abs is the absolute value of x is true.

Conditional Rule: Example #4

• Verify that the program segment:

  ```
  if (balance > 100) nbalance = balance * 1.02
  else nbalance = balance * 1.005;
  ```

• Is correct with respect to pre-condition balance >= 0 and post-condition:
 (balance > 100) & (nbalance = balance * 1.02) ||
 (balance <= 100) & (nbalance = balance * 1.005)
• Consider the two cases...
 1. Condition (balance > 100) is true, assign nbalance to balance*1.02
 2. Condition (balance > 100) is false, assign nbalance to balance*1.005
• Thus, if pre-condition of balance >= 0 is true, (balance > 100 and nbalance = balance * 1.02) or (balance <= 100 and nbalance = balance * 1.005). Thus the post-condition is proven.

How to we prove loops correct?

• General idea: loop invariant
• Find a property that is true before the loop
• Show that it must still be true after every iteration of the loop
• Therefore it is true after the loop
Rule 3: Loop Invariant

while (condition)
S;

• Rule:

\[p \land \text{condition} \in S \Rightarrow \neg \text{condition} \land p \]

Note these are both p!

Note both conclusions

Loop Invariant:

Example #1: Simple Assignments

- Given following program segment, what is loop invariant for z?

```c
int x = 2, y = 3, z = v1;
while (x <= 4) {
    z += y;
    x++;
}
```

Before loop: z = v1
During loop: z = v1 + y \(x - 1\)
Iteration 1: x = 2, z = v1 + 3
Iteration 2: x = 3, z = v1 + 6
Iteration 3: x = 4, z = v1 + 9
- After loop: z = v1 + 9

Thus, loop invariant is: y >= 3; z = v1 + y \(x - 1\)

Loop Invariant:

Example #2: More Assignments

```c
int x = 1, y = 2, z = 5;
while (x <= 5) {
    z += y;
    x++;
}
```

Before loop: x = 1, y = 2, z = 5
During loop: 1 <= x <= 6; y = 2; z = 5 + 2 \(x - 1\)
Iteration 1: x = 1, z = 3
Iteration 2: x = 2, z = 1
Iteration 3: x = 3, z = 1
Iteration 4: x = 4, z = 3
Iteration 5: x = 5, z = 5
- After loop: x = 6, y = 2, z = 5

Thus, loop invariant is: 1 <= x <= 6; y = 2; 5 <= z <= 5

Loop Invariant:

Example #3: Factorial Computation

- Given following program segment, what is loop invariant for factorial and i?

```c
i = 1;
factorial = 1;
while (i < n) {
    i++;
    factorial *= i;
}
```

Before loop: i = 1 and because n >= 1, then i <= n, factorial = 1 = 1! = i!
- During loop: i < n, and factorial = i!
- After loop: i = n and because i = n, so factorial = i! and because i = n, factorial = i! = n!

Thus, loop invariant is: i <= n; factorial = i!

So we have proven that the program segment terminates with factorial = n!, i.e., it correctly computes the factorial.