
CS163/164 Final Exam
Study Session

Review

What is printed?

 public static void main (String [] args){
 String s = "Winter Break";
 System.out.println(s.indexOf('c'));
 System.out.println(s.indexOf('e'));
 System.out.println(s.charAt(2));
 System.out.println(s.length());
 }

-1
4
n
12

Using printf print the double variable
called d to 2 decimal places

System.out.printf(“%.2f\n”, d);

Create a 2D array of doubles called
dArray with a width of 4 and a height of

5.

double [][] dArray = new double[5][4];

I/O

Create a Scanner that reads from the
keyboard called keys

Scanner keys = new Scanner (System.in);

Create a Scanner (called fReader) that
reads from the file named in.txt. Include

a try-catch.

try {
 Scanner fReader = new Scanner (new File (“in.txt”));
} catch (IOException e) {
 System.out.println(e.getMessage());
}
OR
try {
 File f = new File (“in.txt”);
 Scanner fReader = new Scanner (f);
} catch (Exception e) {
 System.out.println(“Can’t read from in.txt”);
 System.exit(-1);
}
Note 1: You must create a new File object (whether inside or outside the Scanner declaration) this makes
it read from a file. If you don’t have it, it would read in.txt as a String (ie fReader.nextLine() would return
in.txt not the first line).

Note 2: You can use Exception, IOException, or FileNotFoundException. You can use some sort of println
in your catch using exceptionName.getMessage() or a customized println. If we don’t specify on the exam
which to use you can assume we’ll accept multiple answers.

Create a Scanner (called fReader2) that
reads from the file name stored in the
String filename. Include a try-catch.

try {
 Scanner fReader2 = new Scanner (new File (filename));
} catch (FileNotFoundException error) {
 System.out.println(error.getMessage());
}
OR

try {
 File f = new File (filename);
 Scanner fReader2 = new Scanner (f);
} catch (IOException error) {
 System.out.println(“Can’t read from “ + filename);
}

Note 1: You must create a new File object (whether inside or outside the Scanner declaration) this makes
it read from a file.

Note 2: You can use Exception, IOException, or FileNotFoundException. You can use some sort of println
in your catch using exceptionName.getMessage() or a customized println. If we don’t specify on the exam
which to use you can assume we’ll accept multiple answers.

Create a PrintWriter (called writer) that
writes to the file name stored in outfile.

Include a try-catch.

try{
 PrintWriter writer = new PrintWriter (new File (outfile));
} catch (Exception e) {
 System.out.println(e.getMessage());
}

OR
try{
 File f = new File (outfile);
 PrintWriter writer = new PrintWriter (f);
} catch (FileNotFoundException e) {
 System.out.println(“Can’t write to “ + outfile);
}

Note 1: You can use Exception, IOException, or FileNotFoundException. You can
use some sort of println in your catch using exceptionName.getMessage() or a
customized println. If we don’t specify on the exam which to use you can assume
we’ll accept multiple answers.

Read the next word, int, and next line
from the predefined Scanner called read.

Print the word, int, and next line
separated by colons (:)

String word = read.next();
int num = read.nextInt();
read.nextLine();
String line = read.nextLine();
System.out.println(word + “:” + num + “:” + line);

Write the the following variables’ content
to a file using the predefined PrintWriter

called pw. all on same line but separated
by spaces.

● d - type double
● word - type String
● line - type String
● i - type int

pw.printf(“%f %s %s %d”, d, word, line, i);

OR
pw.print(d + “ “ + word + “ “+ line + “ “ + i);

Sorting

After two iterations of Selection Sort
what’s stored in the following array:
[3, 5, 2, 98, 43, -99]

[-99, 5, 2, 98, 43, 3] first iteration
[-99, 2, 5, 98, 43, 3] second iteration

List the changes made after one iteration
of Bubble Sort write what’s stored in the
following array:
[3, 5, 2, 98, 43, -99]

Process of the first iteration (you only need the last line as an
answer)
[3, 5, 2, 98, 43, -99] - starting
[3, 2, 5, 98, 43, -99]
[3, 2, 5, 43, 98, -99]
[3, 2, 5, 43, -99, 98] - end of first iteration

ArrayList

 Declare an ArrayList of type int called
iList.

ArrayList <Integer> iList = new ArrayList<Integer>();
OR
ArrayList <Integer> iList = new ArrayList<>();

Print the size of the predefined ArrayList
(with a new line) called list.

System.out.println(list.size());

Create a String ArrayList called strList
and add “code blooded” to strList.

ArrayList <String> strList = new ArrayList<String>();
strList.add(“code blooded”);

Use the String ArrayList from the last
slide (called strList) and add “happy
finals week” at the first index and then
add “almost there” to the end.

strList.add(0, “happy finals week”);
strList.add(“almost there”);

Remove the 2nd element of strList.

strList.remove(1);

Print strList

System.out.println(strList);

Remove “abc” from the predefined
String ArrayList called s.

s.remove(“abc”);

Objects and Classes

Given the following class and instance
variable declarations write a constructor
that assigns every instance variable.

public class Assignment {
 private String name;
 private String dueDate;
 private String className;

 // constructor goes here

}

public Assignment (String n, String d, String c) {
 name = n;
 dueDate = d;
 className = c;
}
(your parameters may have different names)

OR
public Assignment (String name, String dueDate, String
className) {
 this.name = name;
 this.dueDate = dueDate;
 this.className = className;
}

Create an Assignment object (using your
constructor from the last slide) called
hw1 with the name: HW1, due date:
12/11/16, class name: CS163

public class Assignment {
 private String name;
 private String dueDate;
 private String className;

 // constructor goes here
}

Assignment hw1 = new Assignment (“HW1”, “12/11/16”, “CS163”);

Create a toString method that prints an
Assignment object’s name, due date,
and class name separated by commas,
and ending in a new line character.

public class Assignment {
 private String name;
 private String dueDate;
 private String className;

 // constructor goes here
}

public String toString() {
 return name + “,” + dueDate + “,” + className + “\n”;
}

(could also split up and create a String variable and return that
String variable)

Tracing

(for each of the following questions, write
what is printed).

public class Trace1 {
 public static void mystery (int [] iArray){
 for (int i = 1; i < iArray.length - 2; i++){
 if (iArray[i] % 2 == 0)
 iArray[i] += 1;
 }
 }
 public static void main (String [] args){
 int [] array = {1, 4, 23, 8, 42, 1, 2};
 mystery(array);
 System.out.println(Arrays.toString(array));
 }
}

[1, 5, 23, 9, 43, 1, 2]

public class Trace1 {
 public String mystery (String s){
 if (s.length() <= 0) return s;
 else
 return s.charAt(0) + mystery(s.substring(1));
 }
 public static void main (String [] args){
 String s = "cold";
 Trace1 t = new Trace1();
 System.out.println(t.mystery(s));
 }
}

cold

public class Trace1 {
 private ArrayList<String> words = new ArrayList<>();
 public void readFile (String filename){
 try {
 Scanner read = new Scanner (filename);
 while (read.hasNext())
 words.add(read.next());
 } catch (Exception e){
 System.out.println(e.getMessage());
 }
 }
 public static void main (String [] args){
 Trace1 t = new Trace1();
 t.readFile("in.txt");
 System.out.println(t.words);
 }
}

[in.txt]

** BEWARE: I read a String not a File!

 public static void mystery (int i){
 if (i == 0 || i == 1) return;
 else {
 System.out.print(--i);
 mystery(i);
 }
 }
 public static void main (String [] args){
 mystery(5);
 }

4321

public static void read (String inFile, String [] lines){
 try {
 Scanner read = new Scanner (new File ("inFile"));
 lines = new String[read.nextInt()];
 for (int i = 0; i < lines.length; i++) {
 lines[i] = read.nextLine();
 }
 } catch (IOException e){
 System.out.println("can't read: " + inFile);
 System.exit(-1);
 }
 }
 public static void main (String [] args){
 String [] lines = null;
 read ("in.txt", lines);
 System.out.println(Arrays.toString(lines));
 }

can't read: in.txt

What is in the output file?
 public static void writeFile (String filename, ArrayList<String> list){
 try {
 PrintWriter pw = new PrintWriter (new File (filename));
 for (String s : list){
 pw.println(s);
 }
 } catch (IOException e){
 System.out.println("ERROR");
 }
 }
 public static void main (String [] args){
 ArrayList<String> lines = new ArrayList<String>();
 lines.add("line4"); lines.add("line3"); lines.add("line2"); lines.add("line1");
 writeFile("out.txt", lines);
 }

Nothing, I didn’t close the PrintWriter.

General Questions

What keyword do you use to implement
an abstract class? An interface?

Interface - use implements
Abstract class - use extends

Ie. public class Contract implements ContractGuidelineInterface
 public class Triangle extends Shape

What is a toString method used for?
When should I use it?

toString methods are used to specify the printing format for objects and classes
you create. For example, if you make a Triangle class (and in turn an object of
type Triangle) and you try and print Triangle without a toString method you will
print out the akdfjl;kj;@kjflkjaeoifj mess (memory address), when you have a
toString method you can tell the compiler to print the object in a certain format (ie.
side1: 3, side2: 4: side3: 89).

Use a toString method anytime you want to print an object of class you created.
Notice when we make our projects and classes a lot of times we don’t ask you to
write a toString method (ie Q6.java didn’t have a toString method) because we
weren’t asking you to print an object of that Class (ie Q6 q6 = new Q6();) we don’t
end up printing q6 we just use it to call your methods.

What is a constructor used for? When
should I use it? If I don’t add one myself
is there still a default one?

A constructor is used to create objects. For example, if we
had a class called Music and we wanted to make an object of
type Music we could have a constructor that takes two Strings
(title and artist) and an int (release year). We might want to
do this to make sure that every Music object we make has
these attributes. However, we could use the default
constructor which takes no parameters and we could
manually change the instance variables (if they’re public), this
can be dangerous because it doesn’t guarantee every
instance variable is assigned a value.

