
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

1

Chapter 20 ArrayLists

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

2

Objectives
q To explore the relationship between interfaces and classes in the Java

Collections Framework hierarchy (§20.2).
q To use the common methods defined in the Collection interface for operating

collections (§20.2).
q To use the Iterator interface to traverse the elements in a collection (§20.3).
q To use a for-each loop to traverse the elements in a collection (§20.3).
q To explore how and when to use ArrayList or LinkedList to store elements

(§20.4).
q To compare elements using the Comparable interface and the Comparator

interface (§20.5).
q To use the static utility methods in the Collections class for sorting, searching,

shuffling lists, and finding the largest and smallest element in collections
(§20.6).

q To develop a multiple bouncing balls application using ArrayList (§20.7).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

3

What is Data Structure?

A data structure is a collection of data
organized in some fashion. The structure
not only stores data, but also supports
operations for accessing and manipulating
the data.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

4

Java Collection Framework
hierarchy

A collection is a container object that holds
a group of objects, often referred to as
elements. The Java Collections Framework
supports three types of collections, named
lists, sets, and maps.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5

Java Collection Framework
hierarchy, cont.

Set and List are subinterfaces of Collection.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

6

The Collection Interface

The Collection interface is for manipulating
a collection of objects.

«interface»
java.util.Collection<E>

+add(e: E): boolean
+addAll(c: Collection<? extends E>):
boolean

+clear(): void
+contains(o: Object): boolean
+containsAll(c:

Collection<?>):boolean
+isEmpty(): boolean

+remove(o: Object): boolean
+removeAll(c: Collection<?>):
boolean

+retainAll(c: Collection<?>):
boolean

+size(): int
+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new element e to this collection.
Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.
Returns true if this collection contains the element o.
Returns true if this collection contains all the elements in c.
Returns true if this collection contains no elements.
Removes the element o from this collection.
Removes all the elements in c from this collection.
Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.
Returns an array of Object for the elements in this collection.
Returns a stream from this collection (covered in Ch 23).
Returns a parallel stream from this collection (covered in Ch

23).

«interface»
java.util.Iterator<E>

+hasNext(): boolean
+next(): E
+remove(): void

Returns true if this iterator has more elements to traverse.
Returns the next element from this iterator.
Removes the last element obtained using the next method.

«interface»
java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super
E>): default void

Returns an iterator for the elements in this collection.
Performs an action for each element in this iterator.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7

The List Interface

A list stores elements in a sequential order,
and allows the user to specify where the
element is stored. The user can access the
elements by index.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

8

The List Interface, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

9

The List Iterator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

10

ArrayList and LinkedList
The ArrayList class and the LinkedList class are concrete
implementations of the List interface. Which of the two
classes you use depends on your specific needs. If you
need to support random access through an index without
inserting or removing elements from any place other than
the end, ArrayList offers the most efficient collection. If,
however, your application requires the insertion or
deletion of elements from any place in the list, you should
choose LinkedList. A list can grow or shrink dynamically.
An array is fixed once it is created. If your application
does not require insertion or deletion of elements, the
most efficient data structure is the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

11

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.
Creates an array list from an existing collection.
Creates an empty list with the specified initial capacity.
Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()
+ArrayList(c: Collection<? extends E>)
+ArrayList(initialCapacity: int)
+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

12

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.
Creates a linked list from an existing collection.
Adds the object to the head of this list.
Adds the object to the tail of this list.
Returns the first element from this list.
Returns the last element from this list.
Returns and removes the first element from this list.
Returns and removes the last element from this list.

+LinkedList()
+LinkedList(c: Collection<? extends E>)
+addFirst(o: E): void
+addLast(o: E): void
+getFirst(): E
+getLast(): E
+removeFirst(): E
+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

13

Example: Using ArrayList and
LinkedList

This example creates an array list filled
with numbers, and inserts new elements
into the specified location in the list. The
example also creates a linked list from the
array list, inserts and removes the elements
from the list. Finally, the example traverses
the list forward and backward.

RunTestArrayAndLinkedList

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

14

The Comparator Interface

Sometimes you want to compare the elements of different
types. The elements may not be instances of
Comparable or are not comparable. You can define a
comparator to compare these elements. To do so, define a
class that implements the java.util.Comparator
interface. The Comparator interface has the compare
method for comparing two objects.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

15

The Comparator Interface
public int compare(Object element1, Object element2)

Returns a negative value if element1 is less than
element2, a positive value if element1 is greater than
element2, and zero if they are equal.

RunTestComparator

GeometricObjectComparator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

16

Other Comparator Examples

RunSortStringIgnoreCase

RunSortStringByLength

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

17

The Collections Class
The Collections class contains various static methods for
operating on collections and maps, for creating
synchronized collection classes, and for creating read-
only collection classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

18

The Collections Class UML Diagram

