
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

1

Chapter 1-9, 12-13, 18, 20, 23
Review Slides

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

2

What is a Computer?
A computer consists of a CPU, memory, hard disk, floppy disk,
monitor, printer, and communication devices.

CPU

e.g., Disk, CD,
and Tape

Input
Devices

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

Communication
Devices

e.g., Modem,
and NIC

Storage
Devices

Memory

Output
Devices

Bus

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

3

Characteristics of Java
✦ Java Is Simple
✦ Java Is Object-Oriented
✦ Java Is Distributed
✦ Java Is Interpreted
✦ Java Is Robust
✦ Java Is Secure
✦ Java Is Architecture-Neutral
✦ Java Is Portable
✦ Java's Performance
✦ Java Is Multithreaded
✦ Java Is Dynamic

Companion
Website

www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
4

Declaring Variables
int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character variable;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

6

Identifiers
✦ An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).
✦ An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.
✦ An identifier cannot be a reserved word. (See Appendix

A, “Java Keywords,” for a list of reserved words).
✦ An identifier cannot be true, false, or
null.

✦ An identifier can be of any length.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7

Numerical Data Types
 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38
 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

8

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

9

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.
5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

10

How to Evaluate an Expression
Though Java has its own way to evaluate an
expression behind the scene, the result of a Java
expression and its corresponding arithmetic
expression are the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java
expression.

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

11

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is
converted into double.

2. Otherwise, if one of the operands is float, the other is
converted into float.

3. Otherwise, if one of the operands is long, the other is
converted into long.

4. Otherwise, both operands are converted into int.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

12

Type Casting
Implicit casting

double d = 3; (type widening)

Explicit casting
int i = (int)3.0; (type narrowing)
int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

13

The boolean Type and Operators

Often in a program you need to compare two
values, such as whether i is greater than j. Java
provides six comparison operators (also known
as relational operators) that can be used to
compare two values. The result of the
comparison is a Boolean value: true or false.

boolean b = (1 > 2);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

14

Relational Operators
 Java Mathematics Name Example Result

Operator Symbol (radius is 5)

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

15

Multiple Alternative if Statements

 if (score >= 90.0)
 System.out.print("A");
else
 if (score >= 80.0)
 System.out.print("B");
 else
 if (score >= 70.0)
 System.out.print("C");
 else
 if (score >= 60.0)
 System.out.print("D");
 else
 System.out.print("F");

 (a)

Equivalent

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

(b)

This is better

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

16

Multi-Way if-else Statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

17

Logical Operators

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

18

switch Statements
switch (status) {
case 0: compute taxes for single filers;

break;
case 1: compute taxes for married file jointly;

break;
case 2: compute taxes for married file separately;

break;
case 3: compute taxes for head of household;

break;
default: System.out.println("Errors: invalid status");

System.exit(1);
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

19

switch Statement Flow Chart

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

20

Operator Precedence
✦ ()

✦ var++, var--

✦ +, - (Unary plus and minus), ++var,--var
✦ (type) Casting

✦ ! (Not)

✦ *, /, % (Multiplication, division, and remainder)

✦ +, - (Binary addition and subtraction)

✦ <, <=, >, >= (Relational operators)

✦ ==, !=; (Equality)

✦ ^ (Exclusive OR)

✦ && (Conditional AND) Short-circuit AND

✦ || (Conditional OR) Short-circuit OR

✦ =, +=, -=, *=, /=, %= (Assignment operator)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

21

The Math Class
✦ Class constants:

– PI

– E

✦ Class methods:
– Trigonometric Methods
– Exponent Methods
– Rounding Methods
– min, max, abs, and random Methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

22

ASCII Code for Commonly Used
Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039
'A' to 'Z' 65 to 90 \u0041 to \u005A
'a' to 'z' 97 to 122 \u0061 to \u007A

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

23

Escape Sequences for Special Characters

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

24

Appendix B: ASCII Character Set
ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

25

Methods in the Character Class

Method Description

isDigit(ch) Returns true if the specified character is a digit.
isLetter(ch) Returns true if the specified character is a letter.
isLetterOfDigit(ch) Returns true if the specified character is a letter or digit.
isLowerCase(ch) Returns true if the specified character is a lowercase letter.
isUpperCase(ch) Returns true if the specified character is an uppercase letter.
toLowerCase(ch) Returns the lowercase of the specified character.
toUpperCase(ch) Returns the uppercase of the specified character.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

26

The String Type
The char type only represents one character. To represent a string
of characters, use the data type called String. For example,

String message = "Welcome to Java";

String is actually a predefined class in the Java library just like the
System class and Scanner class. The String type is not a primitive
type. It is known as a reference type. Any Java class can be used
as a reference type for a variable. Reference data types will be
thoroughly discussed in Chapter 9, “Objects and Classes.” For the
time being, you just need to know how to declare a String
variable, how to assign a string to the variable, how to concatenate
strings, and to perform simple operations for strings.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

27

Simple Methods for String Objects

Method Description
 Returns the number of characters in this string.

Returns the character at the specified index from this string.
Returns a new string that concatenates this string with string s1.
Returns a new string with all letters in uppercase.
Returns a new string with all letters in lowercase.
Returns a new string with whitespace characters trimmed on both sides.

length()

charAt(index)

concat(s1)

toUpperCase()

toLowerCase()

trim()

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

28

Reading Numbers from the Keyboard
Scanner input = new Scanner(System.in);
int value = input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

29

while Loop
while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {
System.out.println("Welcome to Java!");

count++;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

30

do-while Loop

do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

31

for Loops
for (initial-action; loop-

continuation-condition; action-
after-each-iteration) {

// loop body;
Statement(s);

}

int i;
for (i = 0; i < 100; i++) {
System.out.println(

"Welcome to Java!");
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

32

Using break and continue
Examples for using the break and continue
keywords:

✦ TestBreak.java

✦ TestContinue.java

TestBreak Run

TestContinue Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

33

break
 public class TestBreak {
 public static void main(String[] args) {
 int sum = 0;
 int number = 0;

 while (number < 20) {
 number++;
 sum += number;
 if (sum >= 100)
 break;
 }

 System.out.println("The number is " + number);
 System.out.println("The sum is " + sum);
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

34

continue

 public class TestContinue {
 public static void main(String[] args) {
 int sum = 0;
 int number = 0;

 while (number < 20) {
 number++;
 if (number == 10 || number == 11)
 continue;
 sum += number;
 }

 System.out.println("The sum is " + sum);
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

35

Formatting Output
Use the printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and
format specifiers. A format specifier specifies how an item
should be displayed. An item may be a numeric value,
character, boolean value, or a string. Each specifier begins
with a percent sign.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

36

Frequently-Used Specifiers
Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.56;

System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

37

Formal Parameters
The variables defined in the method header are known as
formal parameters.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

38

Actual Parameters
When a method is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

39

Return Value Type
A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a
value, the returnValueType is the keyword void. For example, the
returnValueType in the main method is void.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

40

Calling Methods, cont.

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the value of i
pass the value of j

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

41

Scope of Local Variables
A local variable: a variable defined inside a

method.
Scope: the part of the program where the

variable can be referenced.
The scope of a local variable starts from its

declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

42

Introducing Arrays
Array is a data structure that represents a collection of the
same types of data.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

43

Declaring, creating, initializing
Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the
following statements:
double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

44

Passing Arrays to Methods
public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");

}
}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

45

Passing Arrays as Arguments

✦ Objective: Demonstrate differences of
passing primitive data type variables
and array variables.

TestPassArray Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

46

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array
sequentially without using an index variable. For example, the following code
displays all elements in the array myList:

for (double value: myList)
System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {
// Process the value

}

You still have to use an index variable if you wish to traverse the array in a
different order or change the elements in the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

47

The Arrays.toString(list) Method
The Arrays.toString(list) method can be used to return a string

representation for the list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

48

Linear Search
The linear search approach compares the key
element, key, sequentially with each element in
the array list. The method continues to do so
until the key matches an element in the list or
the list is exhausted without a match being
found. If a match is made, the linear search
returns the index of the element in the array
that matches the key. If no match is found, the
search returns -1.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

49

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

50

Binary Search, cont.

✦ If the key is less than the middle element,
you only need to search the key in the first
half of the array.

✦ If the key is equal to the middle element,
the search ends with a match.

✦ If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

51

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

52

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

53

Motivations

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

 0 983 787 714 1375 967 1087

 983 0 214 1102 1763 1723 1842

 787 214 0 888 1549 1548 1627

 714 1102 888 0 661 781 810

 1375 1763 1549 661 0 1426 1187

 967 1723 1548 781 1426 0 239

 1087 1842 1627 810 1187 239 0

 1723 1548 781 1426 0 239

Thus far, you have used one-dimensional arrays to model linear
collections of elements. You can use a two-dimensional array to
represent a matrix or a table. For example, the following table that
describes the distances between the cities can be represented using a
two-dimensional array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

54

Declaring, Creating, and Initializing Using
Shorthand Notations

You can also use an array initializer to declare, create and
initialize a two-dimensional array. For example,

int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

int[][] array = {
{1, 2, 3},

{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

Same as

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

55

Lengths of Two-dimensional
Arrays, cont.

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

array.length
array[0].length
array[1].length
array[2].length
array[3].length

array[4].length ArrayIndexOutOfBoundsException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

56

Classes
 class Circle {

/** The radius of this circle */
double radius = 1.0;

/** Construct a circle object */
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
 radius = newRadius;
}

/** Return the area of this circle */
double getArea() {
 return radius * radius * 3.14159;
}

 }

Data field

Method

Constructors

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

57

UML Class Diagram

Circle

radius: double

Circle()
Circle(newRadius: double)
getArea(): double
getPerimeter(): double
setRadius(newRadius:
double): void

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and
methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation
for objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

58

Constructors

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

Constructors are a special
kind of methods that are
invoked to construct objects.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

59

Declaring/Creating Objects
in a Single Step

ClassName objectRefVar = new ClassName();

Example:
Circle myCircle = new Circle();

Create an objectAssign object reference

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

60

Accessing Object’s Members
q Referencing the object’s data:

objectRefVar.data

e.g., myCircle.radius

q Invoking the object’s method:
objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

61

Differences between Variables of
Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

62

Instance
Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of
the class.

Instance variables and methods are specified by
omitting the static keyword.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

63

Static Variables, Constants,
and Methods

Static variables are shared by all the instances of the
class.

Static methods are not tied to a specific object.

Static constants are final variables shared by all the
instances of the class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

64

Visibility Modifiers and
Accessor/Mutator Methods

By default, the class, variable, or method can be
accessed by any class in the same package.

q public

The class, data, or method is visible to any class in any
package.

q private

The data or methods can be accessed only by the declaring
class.

The get and set methods are used to read and modify private
properties.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

65

Array of Objects, cont.
Circle[] circleArray = new Circle[10];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

66

The this Keyword
qThe this keyword is the name of a reference that

refers to an object itself. One common use of the
this keyword is reference a class’s hidden data
fields.

qAnother common use of the this keyword to
enable a constructor to invoke another
constructor of the same class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

67

Checked Exceptions vs.
Unchecked Exceptions

RuntimeException, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,
meaning that the compiler forces the programmer
to check and deal with the exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

68

Declaring Exceptions
Every method must state the types of checked
exceptions it might throw. This is known as
declaring exceptions.

public void myMethod()
throws IOException

public void myMethod()
throws IOException, OtherException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

69

Throwing Exceptions
When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

70

Catching Exceptions
try {

statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

71

The File Class
The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

72

Obtaining file properties and manipulating file

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

73

Text I/O
A File object encapsulates the properties of a file or a path,
but does not contain the methods for reading/writing data
from/to a file. In order to perform I/O, you need to create
objects using appropriate Java I/O classes. The objects
contain the methods for reading/writing data from/to a file.
This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner and
PrintWriter classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

74

Writing Data Using PrintWriter
 java.io.PrintWriter

+PrintWriter(filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void
Also contains the overloaded

println methods.
Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.
Writes a string.
Writes a character.
Writes an array of character.
Writes an int value.
Writes a long value.
Writes a float value.
Writes a double value.
Writes a boolean value.
A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined
by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting
Console Output and Strings.”

RunWriteData

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

75

Reading Data Using Scanner
 java.util.Scanner

+Scanner(source: File)
+Scanner(source: String)
+close()
+hasNext(): boolean
+next(): String
+nextByte(): byte
+nextShort(): short
+nextInt(): int
+nextLong(): long
+nextFloat(): float
+nextDouble(): double
+useDelimiter(pattern: St ring):

Scanner

Creates a Scanner object to read data from the specified file.
Creates a Scanner object to read data from the specified string.
Closes th is scanner.
Returns true if this scanner has another token in its input.
Returns next token as a string.
Returns next token as a byte.
Returns next token as a short.
Returns next token as an int.
Returns next token as a long.
Returns next token as a float.
Returns next token as a double.
Sets this scanner’s delimit ing pattern.

 RunReadData

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7676

Abstract Classes and Abstract Methods

Run

GeometricObject

Circle

Rectangle

TestGeometricObject

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7777

Define an Interface
To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

Example:
public interface Edible {
/** Describe how to eat */
public abstract String howToEat();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7878

Interfaces vs. Abstract Classes
In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7979

The toString, equals, and hashCode
Methods

Each wrapper class overrides the toString,
equals, and hashCode methods defined in the
Object class. Since all the numeric wrapper
classes and the Character class implement
the Comparable interface, the compareTo
method is implemented in these classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

80

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)
= 24

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

81

Trace Recursive factorial
animation

returns factorial(4)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

82

Sierpinski Triangle
1. It begins with an equilateral triangle, which is considered to be

the Sierpinski fractal of order (or level) 0, as shown in Figure
(a).

2. Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown in Figure (b).

3. Leave the center triangle intact. Connect the midpoints of the
sides of the three other triangles to create a Sierpinski of order
2, as shown in Figure (c).

4. You can repeat the same process recursively to create a
Sierpinski triangle of order 3, 4, ..., and so on, as shown in
Figure (d).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

83

Java Collection Framework
hierarchy, cont.

Set and List are subinterfaces of Collection.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

84

ArrayList and LinkedList
The ArrayList class and the LinkedList class are concrete
implementations of the List interface. Which of the two
classes you use depends on your specific needs. If you
need to support random access through an index without
inserting or removing elements from any place other than
the end, ArrayList offers the most efficient collection. If,
however, your application requires the insertion or
deletion of elements from any place in the list, you should
choose LinkedList. A list can grow or shrink dynamically.
An array is fixed once it is created. If your application
does not require insertion or deletion of elements, the
most efficient data structure is the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

85

Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6
1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

86

Bubble Sort

 2 5 9 4 8 1
 2 5 4 9 8 1
 2 5 4 8 9 1
 2 5 4 8 1 9

(a) 1st pass

2 4 5 8 1 9
 2 4 5 8 1 9
 2 4 5 1 8 9

(b) 2nd pass

2 4 5 1 8 9
 2 4 1 5 8 9

(c) 3rd pass

2 1 4 5 8 9

(d) 4th pass

 2 9 5 4 8 1

(e) 5th pass

 2 5 4 8 1 9

 2 4 5 1 8 9

 2 4 1 5 8 9

 1 2 4 5 8 9

22
12...)2()1(

2 nnnn =++++

Bubble sort time: O(n2)

RunBubbleSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

87

Merge Sort

 2 9 5 4 8 1 6 7

 2 9 5 4 8 1 6 7

split

 2 9
split

 5 4

 2
split

 9 5 4

 8 1 6 7

 8 1 6 7

 2 9

merge

 4 5 1 8 6 7

 2 4 5 9 1 6 7 8

 1 2 4 5 6 7 8 9

merge

merge

divide

conquer

RunMergeSort
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
88

Quick Sort
Quick sort, developed by C. A. R. Hoare (1962),
works as follows: The algorithm selects an element,
called the pivot, in the array. Divide the array into
two parts such that all the elements in the first part
are less than or equal to the pivot and all the
elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Computational Complexity
(Big O)

✦ T(n)=O(1) // constant time
✦ T(n)=O(log n) // logarithmic
✦ T(n)=O(n) // linear
✦ T(n)=O(nlog n) // linearithmic
✦ T(n)=O(n2) // quadratic
✦ T(n)=O(n3) // cubic

89 Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Complexity Examples

90

http://bigocheatsheet.com/

