CS 163 - Exam 3 Study Guide and Practice Exam

November 6, 2017

2.1.1 Static Example| oo
[2.1.2 Non-Static Bixample]o o

|2.1.3 Calling Static and Non-Static Methods|. o v v v v i e e e

P2 Pass-by-Value vs Pass-by-Reference]. o v v v i ittt e

3.1 General Syntax| L e e
3.2 XaMPLe| . . . e e e e e e e e e
3.3 Suggestions, Warnings, and Resources| oL L

4 ArrayLists
4.1 Suggestions, Warnings, and Resources| o Lo

|5 File 1/0|

B.T Reading a File] o o o
b2 Writing to a Filel o
9.3 Suggestions, Warnings, and Resources| o Lo

2 ACINE| .« v v e e e e e e e e e e e e e e

8 Programming Quiz Practice Exam)|

[9 Suggestions for Studying and Test Taking]
0.1 Writtenl e
9.2 Programming QUiz| e e e e e e e

O3 Common Frrorsl. o e

0 4) O

0 Bl o e e e e e

1 Disclaimer

This is a review of the material so far, but there may be material on the exam not covered in this study guide.

2 Methods and Data

The general format of a method:

public static (parameterType parameterName, ...)
returnType MethodName
private 2 (2)

Note: The slash represents a choice (i.e. a method can be either public or private).
Note: @ means you don’t include anything.

2.1 Static vs. Non-Static

Static methods belong to the class and only have one copy of the information. For example, a Clock class
should be static, because if you change something on a clock you want it change in all other objects too. Static
methods are used when you used when you aren’t going to use instance variables.

Non-Static methods are instances of the class (belong to the object) and you can use instance variables
within the method. For example, a Student class should be non-static because you want to have all of your
objects be different (different name, id, major, etc)

Note on calling methods: The only time you need to create an object of the class (for example, NonStaticExample
ex = new NonStaticExample()) is when you call a non-static method in a static method (a common call is in
the main method, which is static). If you were to have two non-static methods or a non-static method calling
a static method you wouldn’t need to create an object.

2.1.1 Static Example

// Example of a static class: Clock

s public class Clock {
private static int hour, minute;

public Clock (int h, int m){
hour = h;
minute = m;

// default time if no hour and minute are given
public Clock (){
hour = 12;
minute = 0;
}
public static void increaseHour (int num){
hour += num;
}

public static void increaseMinute(int num){
minute += num;

// Calling above methods to save work
public static void increaseHour () {

increaseHour (1) ;

}

public static void increaseMinute (){
increaseMinute (1) ;

public String toString () {
(

}

return String.format (”?%02d:%02d” , hour, minute);

public static void main (String [] args){

Clock c¢1 = new Clock () ;

System.out.println(”cl — Default new clock (should be 12:00): ”

cl.increaseMinute () ;

// returns time

System.out.println (”cl — adding a minute: 7 + cl);

Clock ¢2 = new Clock (7, 15);

System.out.println (?c2 — created with time 7:15: 7 4+ ¢2);
System.out.println (?cl — after creating c2: 7 + cl);
c2.increaseHour (2);

System.out.println(”c2 — after adding 2 hours: 7 4+ ¢2);

System.out.println (”cl — after c2 is

s }

The output from the above code:

incremented by 2: 7 4+ cl);

cl - Default new clock(should be 12:00): 12:00

cl - adding a minute: 12:01

c2 - created with time 7:15: 07:15

cl - after creating c2: 07:15

c2 - after adding 2 hours: 09:15

cl - after c2 is incremented by 2: 09:15

2.1.2 Non-Static Example

public class Student {
private String first;
private String last;
private int id;

public Student (String first , String last,

this. first = first;
this.last = last;
this.id = id;

}
@OQOverride
public String toString () {
return 7 (? 4+ last + 7, 7 + first + 7)”;
}

}

Output from the above code:
Total Students in CS160:

Name: Bobby Joe

Major: Mathematics
Minor: Computer Science
Year: Senior

ID Number: 90314

Name: John Doe

Major: Computer Science
Minor: None

Year: Freshman

ID Number: 90213

int

id) {

with

+ cl);

00:00 format .

2

Name: Julie Sparkles
Major: English
Minor: None

Year: Junior

ID Number: 91942

Name: Steve Reeves
Major: Physics
Minor: Mathematics
Year: Sophomore

ID Number: 90870

Updated Total Students:

Name: Bobby Joe

Major: Mathematics
Minor: Computer Science
Year: Senior

ID Number: 90314

Name: John Doe

Major: Computer Science
Minor: English

Year: Freshman

ID Number: 90213

Name: Julie Sparkles
Major: Computer Science
Minor: None

Year: Junior

ID Number: 91942

Name: Steve Reeves
Major: Physics
Minor: Mathematics
Year: Junior

ID Number: 90870

2.1.3 Calling Static and Non-Static Methods
Calling Static Methods:

public class StaticExample {

public static void printMyArray(int [] array){
for (int i = 0; i < array.length; i++){
System.out.print (array[i] + 7 7);
}

System.out.println(); //used for spacing

}

public static void doubleMyArray(int [] array) {

for (int i = 0; i < array.length; i++4)
array [1] *= 2;

public static void main (String [] args) {
int [] myArray = {1, 2, 3, 4};

System.out.println (” Initial value of myArray”);

printMyArray (myArray) ;

doubleMyArray (myArray) ;

System.out.println (” Values of myArray after
printMyArray (myArray) ;

calling doubleMyArray”);

19 }
20 }

Output from the above code:

Initial value of myArray

1234

Values of myArray after calling doubleMyArray
2468

Calling Non-Static Methods:

1 public class NonStaticExample {

2 private int [] myArray = {1, 2, 3, 4};

3 public void printMyArray (){

" for (int 1 = 0; i < myArray.length; i++){
5 System.out.print (myArray[i] + 7 7);
’ }

7 System.out.println(); //used for spacing
s

9 public void doubleMyArray () {

10 for (int i = 0; i < myArray.length; i++)
myArray [i] *= 2;

1

1 public static void main (String [] args){

1 NonStaticExample ex = new NonStaticExample () ;

15 System.out.println (” Initial value of myArray”);

16 ex.printMyArray () ;

17 ex .doubleMyArray () ;

18 System.out.println (” Values of myArray after calling doubleMyArray”);
19 ex.printMyArray () ;

20 }

21 }

Output from the above code:

Initial value of myArray

1234

Values of myArray after calling doubleMyArray
2468

2.2 Pass-by-Value vs Pass-by-Reference

Pass-by-Value are primitive types that are passed into a method’s parameter. These values are not changed
outside the method that initializes them!. The calling method creates a copy of the values so the original
values are never changed. For example:

public class PassByValue {

1

2 public static void increment(int n){
3 n-+-;
4

System.out.println (”Value of n in increment method: ” + n);
s}
6
7 public static void main (String [] args) {
8 int number = 100;
9 System.out.println (”Inital value of number: ” 4+ number);
10 increment (number) ;
11 System.out.println (”Value of number after calling increment method: ” 4 number);
12 }
13 }

Output from above code:

Inital value of number: 100
Value of n in increment method: 101
Value of number after calling increment method: 100

w o=

Pass-by-Reference are always objects. This is because they have their own specified memory (aka it has memory
allocated for the variable), so when a method calls that variable it accesses that place in memory and manipulates
that. Therefore, Pass-by-Reference variables are changed!. For example:

import java.util.Arrays;

public class PassByReference {
public static void multiplyIndex0(int [] i, int p){

i[0] *= p;

System.out.println (” Values of i in multiplyIndex0: ” + Arrays.toString(i));
public static void main (String [] args) {

int [] intArray = {1, 2, 3};

System.out.println (”Inital values of intArray: ” 4+ Arrays.toString(intArray));

multiplyIndex0 (intArray, 9);
System.out. println (” Values of intArray after multipleIndexO0:

)8

il

+ Arrays.toString (intArray)

Inital values of intArray: [1, 2, 3]
Values of i in multiplyIndexO: [9, 2, 3]
Values of intArray after multipleIndexO: [9, 2, 3]

3 Objects

3.1 General Syntax

Creating a constructor:

public ClassName (sometimes parameters) {
// code to initialize instance variables if there parameters

Instantiating an object:

ClassName objectName = new ClassName (constructor parameters if any);

Note: If there are no parameters in the constructor it would look like:
ClassName objectName = new ClassName ();

3.2 Example

public class Book {
//Instance Variables
private String title;
private String author;
private int year;

//Constructor

//NOTE: public Book (method name must be the exact same
//as class name. You are not returning anything so the
//format is just public name (parameters, if, needed){}
public Book (String _title , String _author, int _year) {

title = _title;

author = _author;

year = _year; //NOTE: no return value
// Getters

public String getTitle (){
return title;

public String getAuthor () {
return author;
}

public int getYear () {

1

2

return year;
}
//Setters
public void setTitle (String -title){

title = _title;

}

public void setAuthor (String _author) {
author = _author;

}

public void setYear (int _year) {
year = _year;

//toString
public String toString () {
String s = "7
s 4= 7" Title: ” + title + 7, ? ;
s += 7 Author: ” 4+ author + 7, 7;
s += 7 Year: 7 + year;
return s;
¥
public static void main (String [] args){
Book book0 = new Book (”It’s Raining from the Clouds”,
?0Oh Knowledgeable One”, 1970);

Book bookl = new Book(” Life Without a Cell Phone: The Nightmare of Tweens” ,

”Bored and Un—Social”, 2013);
new Book (”Running out of Clever Names” ,
”?Addy Moran” , 2016);
Book [] Library = {book0, bookl, book2};

Book book2

for (int i = 0; i < Library.length; i++)
System.out. println (Library[i]);

}

Output from the above code:

Title: It’s Raining from the Clouds, Author: Oh Knowledgeable One,

Year: 1970

Title: Life Without a Cell Phone: The Nightmare of Tweens, Author: Bored and Un-Social,
Title: Running out of Clever Names, Author: Addy Moran, Year: 2016

3.3 Suggestions, Warnings, and Resources

e Resource: Tutorials Point - Method Tutorial

4 ArrayLists

General initialization syntax:
ArrayList<type> name = new ArrayList<>(); or ArrayList<type> name

import java.util.ArrayList;

public class ArrayListExamples {
public static void main (String [] args) {
ArrayList<String> names = new ArrayList<String >();
names . add (”Bob”) ;
names . add (” Bobby”) ;
names . add (” Bobina”) ;

System.out.println (names) ;

for (int i = 0; i < names.size(); i++)
System.out.print (names.get (i) + 7 7);
System.out.println () ;

names . remove (0) ;
System.out.println (names) ;
names.remove (”Bobina”) ;

new ArrayList<type>();

Year:

2013

https://www.tutorialspoint.com/java/java_methods.htm

System.out.println (names) ;

// For primitive types, you MUST use their corresponding wrapper class
ArrayList<Integer> iList = new ArrayList<>();

iList .add (1) ;

iList .add (0) ;

iList.add(1);

iList .add (0) ;

iList .add (1) ;

iList .add (1) ;

if (iList.contains(0))

System.out. println (7indexOf(0): 7 4+ iList.indexOf(0));
System.out.println (”get the int at index 1: ” 4+ iList.get(1l));
System.out.println (iList);

// Creating an ArrayList of a class type

// (class below)

ArrayList <Student> studentList = new ArrayList <>();
Student s = new Student (”Joe”, ”Steve”, 112);
studentList .add(s);

studentList .add (new Student(” Arabelle”, ”Jones”, 118));
studentList.add (new Student(”James” , ”Potter”, 200));
System.out.println (studentList);

}
}

public class Student {
private String first;
private String last;
private int id;

public Student (String first , String last, int id) {

this. first first ;
this.last = last;
this.id = id;
}
@Override
public String toString () {
return 7 (7 4+ last + 7, 7 + first + 7)7;
}

}
Output from the above code:

[Bob, Bobby, Bobina]

Bob Bobby Bobina

[Bobby, Bobinal

[Bobby]

index0f(0): 1

get the int at index 1: 0O

[1, 0, 1, 0, 1, 1]

[(Steve, Joe), (Jones, Arabelle), (Potter, James)]

4.1 Suggestions, Warnings, and Resources
e Warning: For primitive types you must use their corresponding wrapper classes!
e Resource: Java Documentation ArrayList

e Resource: Tutorial’s Point ArrayList Tutorial

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.tutorialspoint.com/java/java_arraylist_class.htm

5 File I/O
5.1 Reading a File

Think of reading a file just as reading input from the keyboard (the only differences are when setting up the
Scanner instead of having System.in you are going to use a File object and you need to catch the exception).

import
import
import
import

public

java.io. File;
java.util.Scanner;
java.io.lOException;

java.io.FileNotFoundException;

class ReadFile {

public static void main (String [] args) {

//
//

Below are three different ways of

creating a Scanner that reads a file
// and different ways to write an try—catch block
System.out.println (”Reading the file

the first time:”);

String filename = ”example.txt”;
try {
Scanner reader = new Scanner (new File (filename));

} catch (IOException e) {
System.out. println (e);
}
System.out.println (”\nReading the file the second time:”);
try {
Scanner reader = new Scanner (new File (”example.txt”))

}

String line;

while (reader.hasNextLine ()){
line = reader.nextLine () ;
System.out. println(line);

reader . close () ;

String word;

while (reader.hasNext()) {
word = reader.next () ;
System.out. println (word) ;

reader . close () ;

catch (Exception e) {

System.out. println (” Could not read
System . exit(—1);

file”);

System.out.println (”\nReading the first word of the file
try {

}
}
}

File f = new File (”example.txt”);
Scanner reader = new Scanner (f);
String firstWord = reader.next();
System.out. println (" First word is:
reader . close () ;

catch (FileNotFoundException e) {
System.out. println (e);

Contents of example.txt:

Hey
how’s
Okay,
Bye

it going??

The output to the code above:

Reading the file the first time:

7 4 firstWord) ;

)

)

(again):”);

Hey
how’s
Okay,
Bye

it going??

Reading the file the second time:

Hey
how’s
it

going??

Okay,
Bye

Reading the first word of the file (again):

First

5.2

word is: Hey

Writing to a File

Think of PrintWriters as regular System.out.print/System.out.println/System.out.printf statements ex-
cept instead of printing to the console you’re writing to a file (just remember to use the PrintWriter name instead
of System.out and you have to catch an exception).

import java.io.PrintWriter;
import java.io.File;
import java.io.IOException;

public class WriteFile {
public static void main (String [] args) {
try {

/ *

Could also:

File f = new File (”output.txt”);
PrintWriter writer = new PrintWriter (f);

*

/

PrintWriter writer = new PrintWriter (new File (”output.txt”));
System.out.println (” Writing to the file...”);

writer.print ("Hey! 7);

String fileContents = ”write this to the file...”;

writer . println (fileContents);

writer . printf (”Purpose: %s\nDate: %d-%d—%d”, ”CS150 Study Guide”, 11, 2, 2017);
// this must happen, otherwise the file won’t get written!

writer . close () ;

System.out. println (” Finished writing to the file”);

// Could also use Exception e

}

catch (IOException e) {
// Could also write your own error message then exit
System.out. println (e);

The output from the above code:

Writing to the file...
Finished writing to the file

The resulting file output.txt contains:

Hey! write this to the file...
Purpose: CS150 Study Guide

Date:

11-2-2017

5.3 Suggestions, Warnings, and Resources

e Warning: You MUST close your PrintWriter!

e Warning: You must pass a File object to read/write to a file (you can’t just put the path to the file as a
String)

e Resource: Tutorials Point - File I/O Tutorial

Resource: |Geeks For Geeks - Exceptions in Java

e Resource: Oracle’s Exceptions Tutorial

6 Interfaces

Interfaces only have method headings, the class that implements the interface completes the methods from the
method heading. If you’d like to implement an interface your class must have all of the methods from the
interface or else your code won’t compile. A few examples:

1. public class P9 implements Interface
2. public class Q1 implements QuizInterface

3. public class TicTacToe implements Game

https://www.tutorialspoint.com/java/java_files_io.htm
http://www.geeksforgeeks.org/exceptions-in-java/
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

7.1

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

S S

23.

Practice Written Exam

Short Answer

. Write a for loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing comma

at the end.

. Write a while loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing

comma at the end.

Write a do-while loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing
comma at the end.

Using a loop (of any kind) print all numbers that are a multiple of three and that is between 1 and 50
(inclusive) separated by semicolons.

Using a loop (of any kind) print each character of the pre-defined String s separated by a new line.
Using a loop (of any kind) print the pre-defined String s backwards (characters all on the same line).

Using a loop (of any kind) print every other letter of the pre-defined String variable s (characters all on
the same line).

Initialize a 1-D String array called names with the values: Bob, Bobina, and Joe.
Create a 1-D double array called averages with a capacity of 10.

Using a loop (of any kind) print the contents of names all on new lines.

Using Arrays.toString() print the values in averages.

Instantiate a 4x4 2-D int array called matrix.

Initialize every value of matrix to 1.

Change the value on the first row, second column to 2.

Print matrix using a for loop.

Initialize an int ArrayList called iList.

Add 3 into iList.

Add 4 into iList.

Add 99 into ilist.

Print iList using the default toString method.

Print every element in iList separated by a comma, all on the same line using a for-each loop

Inside the predefined class Student create a Student object called studentO, who’s name is ” James Bond”
with a student id of 007. Use the following code as guidance:

public class Student {
String id;
String name = 77
public Student (String -id, String _-name){
id = _id;

name = _name;

Using the same class (Student) and the code from above. Create an Student object called studenti,
who’s name is ”Jr Bond” with a student id of 008.

24.

25.
26.
27.

28.
29.

Create an array of type Student called overAchievers and insert student0 and studentl (from questions
5 and 6) into the array.

Initialize a Scanner that reads from the console.
Initialize a Scanner that reads from a file stored in the String variable inputFile. Include a try-catch.

Initialize a Scanner that reads and stores the following from a file called input.txt: a line, a word, an
integer, and a double. Include a try-catch.
Assume the file is in the correct format Include a try-catch.

Initialize a PrintWriter that writes to a file called ouput.txt. Include a try-catch.

Initialize a PrintWriter that writes to a file stored in the String variable outputFile and write the pre-
defined double d to 4 decimal places and a pre-defined String s both on new lines. Include a try-catch.

1
2
3
4

7.2 Tracing

Instructions: For each question (unless specified differently) write what would be printed (even if there are

errors earlier in the code that would cause the program not to compile).

import java.util.Arrays;

public class Car {
private String make;
private String model;
private int year;
private String nickName;
private double miles;
public static Car [] carArray;

public Car (String make, String model, int year, String nickName,

setMake (make) ;
setModel (model) ;
setYear (year);
setNickName (nickName) ;
setMiles (miles);

public String getMakeAndModel () {
return make + 7 7 4+ model;

public void setMake (String s) {

make = s;
}
public void setModel (String s) {
model = s;

public void setYear (int i) {
year = i;
}

public void setNickName (String s) {

nickName = s;

}

public void setMiles (double d) {
miles = d;

}

public int getYear () {
return year;

public String getNickName () {
return nickName;

public double getMiles () {
return miles;

public String toString (){
String s = "Make: ” + make;
s 4= 7 Model: 7 + model;
s += " Year: 7 + year;
s 4= 7 Nickname: ” 4 nickName;
s 4= " Mileage: 7 4+ miles;
return s;
}
public static void main (String [] args){
Car c0 = new Car (”Chevy”, ”Camaro”, 2013,
?Lightning McQueen” , 15000) ;

Car ¢l = new Car (”Ford”, "F150”, 1950, "Tow Mater” , 200000);

Car ¢2 = new Car (”Ford”, ”Coupe”, 1936, ”"Doc Hudson” ,
Car ¢3 = new Car (”Mack”, ”Flintstone”, 1980, ”Mack”,
Car [] carsCharacters = {c0, cl, c2, c3};

//Question 1:

System.out.println (carsCharacters [2]) ;

//Question 2:

System.out. println (cl.getYear());

//Question 3:

for (int i = 0; i < carsCharacters.length; i++){

150000) ;
100000) ;

double miles){

10.

11.

12.
13.

System.out. println (carsCharacters[i].getNickName());

Programming Quiz Practice Exam

. Create a class called SuperHero.

Create three instance variables: a String for the super hero’s name, an int for their age, and an ArrayList
of Strings of their super powers.

Create a constructor for the SuperHero class that takes parameters to fill the instance variables (i.e. a
String, an int, and an ArrayList of Strings).

Create a toString method that prints the super hero’s name, age, and superpowers a Il on new lines.
Example:

Superman
28
Flying, Strong, Comes included with cape,

Write a void method called addPower that takes in a String. The method adds a superpower to the
superpower ArrayList.

Create an ArrayList of Strings that has the values “strong”, “brave”, “tights”

Create a SuperHero object, his name is “Spiderman”, his age is 26, and his powers are included in the
ArrayList from the previous question.

Using the toString method, print the contents of the SuperHero object created in the previous questions
Add “climbing” to Superman’s superpowers

Create a SuperHero object based on the following information:
name = Hulk, age = 24, powers = strong, camo

Create a SuperHero object based on the following information:
name = Thor, age = 38, powers = enchanted hammer, thunder

Create an ArrayList of SuperHero objects filled with the SpiderMan, Hulk, and Thor SuperHero objects.

Create a PrintWriter that writes the ArrayList of super heroes to a file called super.txt.

9 Suggestions for Studying and Test Taking

9.1 Written

When reading through code and writing the output: Write your variables on the side and as your variables
change in the program, you change your variables on the side.

Practice writing code in Eclipse and before you run your program guess what the output would be. This
is good practice for testing your own programs and also for the code tracing part of the exam.

If you need more tracing examples (or more coding examples in general), there is a “Programs” tab on the
CS150 homepage. There are also examples on the Progress page.

9.2 Programming Quiz

Redo past recitations and assignments until you no longer need to use the internet, friends, or past code.

Practice writing code in Eclipse. Make up projects and problems or ask a TA and they can give you some
challenges.

Look at code, the more exposure you get to code (whether it’s your own code or not) the easier it is to
understand. Some sample code is under the “Programs” tab and the Progress Page.

9.3 Common Errors

e Incorrect brackets around conditional statements

e Semicolons right after loops and if statements

9.4 Challenges

CodingBat| and [Hackerrank offer good extra coding practice.

http://codingbat.com/java
https://www.hackerrank.com/domains/java/java-introduction

ANSWERS ON THE NEXT PAGE

10 Answers to Practice Written and Programming Problems

10.1 Written

Note: Your implementations may be different (different variable names, < vs <, while, do-while, or for, etc).
These answers are just for guidance and there are many ways to correctly implement these questions.

1

// could also have (i < 9)
2> for (int i = 3; i <= 8; i++)
3 System.out.print (i + 7,7);

2

// could also have (il <= 8)
> // could also increment outside of print
. int i1 = 3;
while (il < 9)
System.out.print (il4++ + 7,7);

S

3 // could use pre or post increment or increment like in the previous question
, int i2 = 3:

3 do {

System.out.print (i2 + 7 ,”);

; 124+;

6 } while (i2 <= 8);

SIS

4. for (int i = 0; i <= 50; i++)
> if (i % 3 = 0)
3 System.out.print (i + ”7;”);

o1 for (int i = 0; i < s.length(); i++)
2 System.out.println (s.charAt(i));

6. for (int i = s.length() — 1; i >= 0; i——)
2 System.out. print (s.charAt(i));

7. for (int i = 0; i < s.length(); i+=2)
)

System.out.print (s.charAt (i

);

8. String [] names = {"Bob", "Bobina", "Joe"};
9. double [] averages = new double [10];

101 for (int i = 0; i < names.length; i++)
System.out. println (names[i]) ;

N

11. System.out.println(Arrays.toString(averages)) ;
12. int matrix [] [= new int [4][4];
131 for (int row = 0; row < matrix.length; row++)

for (int col = 0; col < matrix[row].length; col++)
matrix [row | [col] = 1;

w W

14. board[0][1] = 2;

15: for (int row = 0; row < matrix.length; row++){
2 for (int col = 0; col < matrix[row].length; col++)
3 System .out . print (matrix [row][col]);

y System.out.println(); //added for spacing

16. ArrayList<Integer> ilist = new ArrayList<Integer>();
NOTE: This is also correct: ArrayList<Integer> iList = new ArrayList<>();

17.
18.
19.
20.
21

22.
23.
24

25.

iList.add(3);
iList.add(4);
iList.add(99);
System.out.println(ilist);

for (int i : iList)
System.out.print (i + 7,”);

Student studentO

new Student ("007", "James Bond");

Student studentl = new Student ("008", "Jr Bond");

Student [] overAchievers = {studentO, studentl};

Scanner keys = new Scanner (System.in);

. NOTE: for questions 14 - 17, you’re exceptions may be different, look at the reading/writing to a file

sections above to find what is acceptable.

try {

Scanner reader = new Scanner (new File(inputFile));
} catch (IOException e) {

System.out.println (e);

}

String word =
int i = 0;

99,
)

3 double d = 0.0;

29

29 .

String line =
try {
Scanner reader = new Scanner (new File(”input.txt”));
line = reader.nextLine();
word = reader.next () ;
i = reader.nextInt () ;
d = reader.nextDouble () ;
reader . close () ;
} catch (Exception e) {
System.out. println(e);

}

try {
PrintWriter pw = new PrintWriter (new File (” output.txt”));
} catch (Exception e) {
System.out.println (” Could not print to file”);
System. exit (—1);

}

try {
PrintWriter pw = new PrintWriter (new File(outputFile));
pw.printf(”%.4f\n”, d);
pw.println (s);
pw.close () ;
} catch (IOException e) {
System.out. println (e);

}

10.2 Tracing
1. Make: Ford Model: Coupe Year: 1936 Nickname: Doc Hudson Mileage: 150000.0

2. 1950

3. Lightning McQueen
Tow Mater
Doc Hudson
Mack

10.3 Programming
NOTE: Your variable names/try-catch statements may look different.

import java.util.ArrayList;
import java.io.PrintWriter;
import java.io.File;

import java.io.lIOException;

public class SuperHero {
private String name;
private int age;
private ArrayList<String> superpowers;

public SuperHero (String name, int age, ArrayList<String> superpowers) {

this .name = name;
this.age = age;
this.superpowers = superpowers;

}

@Override
public String toString () {
String ret = name + ”\n” + age + "\n”;
for (String power : superpowers)
ret += power + 7.7
return ret;

}

public void addPower (String power) {
superpowers .add (power) ;

public static void main (String [] args) {
ArrayList<String> spiderman_powers = new ArrayList<>();
spiderman_powers.add(” strong”) ;
spiderman_powers.add(” brave”) ;
spiderman_powers.add(” tights”);

SuperHero spiderman = new SuperHero (”Spiderman”, 26, spiderman_powers);
System.out.println (spiderman) ;
spiderman .addPower (” climbing”) ;

ArrayList<String> hulk_powers = new ArrayList<String >();
hulk_powers.add(”strong”);

hulk_powers.add (”camo”) ;

SuperHero hulk = new SuperHero(”Hulk”, 24, hulk_powers);

ArrayList<String> thor_powers = new ArrayList<String >();
thor_powers.add(” enchanted hammer”) ;

thor_powers.add(” thunder”);

SuperHero thor = new SuperHero (”Thor”, 38, thor_powers);

ArrayList<SuperHero> superheroes = new ArrayList<SuperHero>();
superheroes.add(spiderman) ;
superheroes.add (hulk) ;

54 superheroes.add(thor);

56 try

57 PrintWriter printer = new PrintWriter
58 for (SuperHero hero : superheroes)

59 printer.println (hero);

60 printer.close () ;
61 } catch (IOException e) {
62 System.out.println (e);

super.txt should have the following contents:

Spiderman

26
strong,brave,tights,climbing,
Hulk

24

strong,camo,

Thor

38

enchanted hammer,thunder,

(new File (”super.txt”))

)

	Disclaimer
	Methods and Data
	Static vs. Non-Static
	Static Example
	Non-Static Example
	Calling Static and Non-Static Methods

	Pass-by-Value vs Pass-by-Reference

	Objects
	General Syntax
	Example
	Suggestions, Warnings, and Resources

	ArrayLists
	Suggestions, Warnings, and Resources

	File I/O
	Reading a File
	Writing to a File
	Suggestions, Warnings, and Resources

	Interfaces
	Practice Written Exam
	Short Answer
	Tracing

	Programming Quiz Practice Exam
	Suggestions for Studying and Test Taking
	Written
	Programming Quiz
	Common Errors
	Challenges

	Answers to Practice Written and Programming Problems
	Written
	Tracing
	Programming

