
3/22/2017

1

ArrayLists

Using arrays to store data

 Arrays: store multiple values of the same type.

 Conveniently refer to items by their index

 Need to know the size before declaring them:

int[] numbers = new int[100];

 We often need to store an unknown number of

values.

 Need to either count the values or resize as additional

storage space is needed.

3/22/2017

2

Lists

 list: a collection storing an ordered sequence of

elements,

each accessible by a 0-based index

 a list has a size (number of elements that have been added)

 elements can be added at any position

ArrayIntList

 Let's consider the methods of a class called
ArrayIntList that represents a list using int[]

 behavior:

 add(value), add(index, value)

 get(index), set(index, value)

 size()

 remove(index)

 indexOf(value)

…

 The list's size will be the number of elements added to it

so far

3/22/2017

3

ArrayIntList

 construction
int[] numbers = new int[5];

ArrayIntList list = new ArrayIntList();

 storing a given value: retrieving a value
numbers[0] = 42; int val = numbers[0];

list.add(42); int val = list.get(0);

 searching for a given value
for (int i = 0; i < numbers.length; i++) {

if (numbers[i] == 27) { ... }

}

if (list.indexOf(27) >= 0) { ... }

Pros/cons of ArrayIntList

 pro (benefits)

 simple syntax

 don't have to keep track of array size and capacity

 has powerful methods (indexOf, add, remove,

toString)

 con (drawbacks)

 ArrayIntList only works for ints (arrays can

be any type)

 Need to learn how to use the class

3/22/2017

4

Java Collections and ArrayLists

 Java includes a large set of powerful classes

that provide functionality for storing and

accessing collections of objects

 The most basic, ArrayList, can store any type

of Object.

 All collections are in the java.util package.

import java.util.ArrayList;

Type Parameters (Generics)

ArrayList<Type> name = new ArrayList<Type>();

 When constructing an ArrayList, you can specify the

type of elements it will contain between < and >.

 We say that the ArrayList class accepts a type parameter,

or that it is a generic class.

ArrayList<String> names = new ArrayList<String>();

names.add(”Asa");

names.add(”Nathan");

3/22/2017

5

ArrayList methods

add(value) appends value at end of list

add(index, value) inserts given value at given index, shifting
subsequent values right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found
in list (-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting
subsequent values left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

ArrayList methods 2

addAll(list)
addAll(index, list)

adds all elements from the given list at the end of this list
inserts the list at the given index of this list

contains(value) returns true if given value is found somewhere in this list

containsAll(list) returns true if this list contains every element from given list

equals(list) returns true if given other list contains the same elements

remove(value) finds and removes the given value from this list

removeAll(list) removes any elements found in the given list from this list

retainAll(list) removes any elements not found in given list from this list

subList(from, to) returns the sub-portion of the list between indexes from
(inclusive) and to (exclusive)

toArray() returns an array of the elements in this list

3/22/2017

6

Learning about classes

 The Java API specification website contains detailed documentation

of every Java class and its methods.

https://docs.oracle.com/javase/8/docs/api/

Iterating through an array list

 Suppose we want to look for a value in an ArrayList of

Strings.

for (int i = 0; i < list.size(); i++) {

if(value.equals(list.get(i)){

//do something

}

}

 Alternative:
for (String s : list) {

if(value.equals(s)){

//do something

}

}

3/22/2017

7

Note on generics in Java 7 and above

In version 7 of Java, rather than doing:

ArrayList<Type> name = new ArrayList<Type>();

You can save a few keystrokes:

ArrayList<Type> name = new ArrayList<>();

Modifying while looping

 Consider the following flawed pseudocode for

removing elements that end with ‘s’ from a list:

removeEndS(list) {

for (int i = 0; i < list.size(); i++) {

get element i;

if it ends with an 's', remove it.

}

}

 What does the algorithm do wrong?

index 0 1 2 3 4 5

value "she" "sells" "seashells" "by" "the" "seashore"

size 6

3/22/2017

8

ArrayList of primitives?

 The type you specify when creating an ArrayList

must be an object type; it cannot be a primitive type.

 The following is illegal:

// illegal -- int cannot be a type parameter

ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by

using special classes called wrapper classes in their

place.

ArrayList<Integer> list = new ArrayList<Integer>();

16

Wrapper classes: Example

 Every java primitive has a class dedicated

to it.

Example:

int x = 3;

Integer y = new Integer(5);

int z = x + y;

int z = x + y.intValue(); // convert wrapper to primitive

// can also construct an Integer from a string:

y = new Integer(“5”);

3/22/2017

9

ArrayLists of wrapper type objects

 A wrapper is an object whose purpose is to hold a primitive value

and to provide more functionality.

 Once you construct the list, use it with primitives as normal

(autoboxing):

ArrayList<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

Primitive Type Wrapper Type

int Integer

double Double

char Character

boolean Boolean

float Float

ArrayLists of wrapper type objects

 Autoboxing:

ArrayList<Double> grades = new ArrayList<Double>();

// Autoboxing: create Double from double 3.2

grades.add(3.2);

grades.add(2.7);

double sum = 0.0;

for (int i = 0; i < grades.size(); i++) {

//AutoUNboxing from Double to double

sum += grades.get(i);

}

...

3/22/2017

10

Java Collections

 ArrayList belongs to Java’s Collections

framework.

 Other classes have a very similar interface, so it

will be easier to learn how to use those classes

once you’ve learned ArrayList

Looking ahead: Interfaces

 A Java interface specifies which public methods

are available to a user

 A class implements an interface if it provides all

the methods in the interface

 Interfaces allow for common behavior amongst

classes. Example: the List interface is

implemented by several Collections classes

(LinkedList, ArrayList, Vector, Stack)

