CS 163/164 - Exam 2 Study Guide and Practice Exam

October 9, 2017

Summary
I Disclaimer]

2 00opSs|

..
[2.2 while loops|

2.3 do-while loops|.
P-4 Suggestions, Warnings, and RESOUTCES| o v v v v v it e e
...

Arrays
3.1 1D Arrays| e e e

B.-1.1 General Syntax| L
...
[3.2.1 General Syntax|
[3-37 Suggestions, Warnings, and RESOUICES| . . . « .« v v v v v v e e e
8.4 Common Exceptions|

4.1.1 Static Example|
4.1.2 Non-Static Examplel o o
4.1.3 Calling Static and Non-Static Methods|. oo 0oL
4.2 Pass-by-Value vs Pass-by-Reference|.

.1 General Syntax| Lo e
5.2 xXample| L
[6.37 Suggestions, Warnings, and RESOUICES| . . . « .« v v o v v v e e e e

[6 Bitwise Operators|
6.1 Suggestions, Warnings, and Resources| L o

[8 Programming Quiz Practice Exam)|

9 Suggestions for Studying and Test Taking|
0.1 Writtenl o e e e
9.2 Programming Quiz| oL
9.3 Common Errorsl.o

9.4 Challenges|. e

[10 Answers to Practice Written and Programming Problems|

0 Bl o e e e e e e e e

1

w N

1 Disclaimer

This is a review of the material so far, but there may be material on the exam not covered in this study guide.

2 Loops

2.1 for loops

For loops are generally used when you know when you want to stop. For example if you need to count to 100
or if you need to loop the length of a String.

General syntax:

for (initialize; termination condition; update) {
// code

A few examples:

public class ForLoops {
public static void main (String [] args) {
for (int i = 0; i < 10; i++)
System.out.print (i + 7 7);
System.out.println(); // used for spacing

String s = "Hello! How are you?”;
for (int i = 0; i < s.length(); i++)
System.out.print (s.charAt(i) + 7:7);

System.out.println(); // used for spacing

for (int i = 3; i >= 0; i—)
System.out. println (i);
System.out.println (” Blastoff!!”);

int count = 0;

for (int i = 1; i < 50; i+= 2) {
System.out.print (i + 7, 7);
count++;

}

System.out. printf(”Number of odd numbers < 50: %d\n”, count);

for (char ¢ = ’a’; ¢ <= ’'z’; ct++)
System.out.print(c + 7");
System.out.println(); //used for spacing
}
}

The output from the above code:

0123456789

H:e:1:1l:0:!: :H:o:w: :a:r:e: :y:o:u:7:
3

2

1

0

Blastoff!!

o, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
Number of odd numbers < 50: 25
a*b*c*d*e*f*g*h*i*j*k*]_*m*n*o*p*q*r*s*t*u*v*w*x*y*z*

2.2 while loops

while loops are generally used when you don’t know when you are going to end. For example, if you are waiting
for a change in the system or for an action from the user (versus knowing you’ll end after the 100th run every

N N

time like a for loop).

General syntax:

initialize

while (termination condition) {
// code
update

}

A few examples:

public class WhileLoops {
public static void main (String [] args) {

int i0 = 0;

while (i0 < 10) {
System.out.print (i0 + 7 7);
104+

}

System.out.println(); // used for spacing

String s = ”"Hello! How are you?”;
int il = 0;
while (il < s.length()) {

System.out.print (s.charAt(il) + 7:7);
il++
}
System.out.println(); // used for spacing
int i2 = 1, count = O0;
while (i2 < 50) {
System.out.print (i2 + 7, 7);
i2 4= 2;
count+4-+;
}

System.out. printf(”\nNumber of odd numbers < 50: %d\n”, count);

}
}

The output from the above code:

0123456789
H:e:1:1l:0:!: :H:o:w: :a:r:e: :y:o:u:7:

o, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

Number of odd numbers < 50: 25

2.3 do-while loops

do-while loops are very similar to while loops but do-while loops always execute the code inside the brackets at

least once.

General syntax:
initialize
do {

// code

update
} while (termination condition);

A few examples:

import java.util.Scanner;

public class DoWhileLoops {
public static void main (String [] args) {
int i0 = 0;
do {
System.out.print (i0 + 7 7);
10+

} while (i0 < 10);
System.out.println(); // used for spacing

String s = "Hello! How are you?”;
int il = 0;
do {
System.out.print (s.charAt(il) + 7:7);
il4++;

} while (il < s.length());
System.out.println () ;

int i2 = 1, count = O0;

do {
System.out.print (i2 + 7, 7);
i2 4= 2;
count++;

} while (i2 < 50);
System.out. printf(”\nNumber of odd numbers < 50: %d\n”, count);

Scanner reader = new Scanner (System.in);
String response = 77
do {
System.out.print (”Are we there yet? ”);
response = reader.nextLine () ;
} while (!response.equalslignoreCase(”yes”));
System.out.println (” Finally !'I17);
reader . close () ;

}

)

The output from the above code:

0123456789
H:e:1l:1l:0:!: :H:o:w: :a:r:e: :y:o:u:7?:

o, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

Number of odd numbers < 50: 25

Are we there yet? no

Are we there yet? almost...

Are we there yet? still not there

Are we there yet? yes

Finally!!!

2.4 Suggestions, Warnings, and Resources
e Resource: For loops resource
e Resource: While loops resource
e Resource: Do-While loops resource

e Resource: Java Documentation for break and continue statements

e OPTIONAL: For-Each Loop Tutorial

e Warning: Watch the ranges! When a String’s length is of size 8,1 < 9 is the same as i < 8. However, i <

9 will give you an error.

“ 2

e Remember: You can always change your update by using the “4+=" or “-=" method, especially if you are

updating by more than 1.

e Remember: You can always change your starting point, you don’t have to start at 0, it is just the most com-
mon. If you were asked to reverse a string, you can always make the starting point at stringName.length()-
1!

e Summary: Basically you can solve a problem with loops in many different ways whether it’s using a
different loop, starting at a different place, changing your ending value, or changing how you update.

https://www.tutorialspoint.com/java/java_for_loop.htm
https://www.tutorialspoint.com/java/java_while_loop.htm
https://www.tutorialspoint.com/java/java_do_while_loop.htm
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
https://www.programiz.com/java-programming/enhanced-for-loop

1
>
3
+

2.5 FAQs

1. Q: When do you use one loop over another?
A: You can almost always use any loop you choose, but there maybe one that is easier than the other.
For example, in the “Are we there yet?” example from above, using a do-while is nice because the loop
always runs at least once (you could have also used a while loop but you would have had to ask the “Are
we there yet?” question before and in the while loop).

3 Arrays

3.1 1D Arrays
3.1.1 General Syntax
General initialization syntax (there are two ways):

1. When you know the size:
typeOfArray [] nameOfArray = new typeOfArray [sizeOfArray];

2. When you know the values:
typeOfArray [] nameOfArray = {values, you, want, in, the, array};

Ways to print 1-D arrays (there are two ways):

1. Using a loop:

for (int i = 0; i < arrayName.length; i++){
System.out . print (arrayName [i]) ;
}

w o=

2. Using Arrays.toString()

1 System.out.println (Arrays.toString (arrayName)) ;

Note: To use Arrays.toString() you must import the Arrays class (import java.util.Arrays;)

You can access an element of a 1D array by using arrayName [indexOfElement] ;.

Below are some examples:

import java.util.Arrays;

public class OneDimArrays {
public static void main (String [] args) {
// Initializing a 1-D Array:
int [] iArray = new int [10];
String [] c¢sClasses = {”CS150”, ?CS163”, ”?CS164”, ”CS270”, ”(CS253” };

// Manipulating 1-D Arrays:

// Getting the length of the array
// Note: You could also print length using arrayName.length;
int arrayLength = csClasses.length;

// Assigning all indexes to one value
for (int 1 = 0; i < iArray.length; i++)
iArray[i] = 1;

// Changing a value at a specific index

iArray [3] 5;

// Printing the array using a for loop
for (int 1 = 0; i < iArray.length; i++)

w N

o

System.out.print (iArray[i] + 7, 7);
System.out.println(); // used for spacing

// Printing the array using Arrays.toString/()
System.out.println (Arrays.toString (iArray));
}
}

Output from the above code:

3.2 2D Arrays
3.2.1 General Syntax

General initialization syntax (there are two ways):

1. When you know the size:
typeOfArray [][] nameOfArray = new typeOfArray [numRows][numCols];

2. When you know the values:

1 typeOfArray [] nameOfArray = {{values, you, want, in, row 1},
2 {values, you, want, in, row 2},
{values, you, want, in, row 3}};

You can print a 2-D array using a loop:

for (int row = 0; row < arrayName.length; row++){
for (int col = 0; col < arrayName[row].length; col++) {
System.out . print (arrayName [row][col]) ;

}

5 System.out.println(); // used for spacing
» }

You can access an element of a 2D array by using arrayName [rowIndex] [colIndex] ;.

Below are some examples:

public class TwoDimArrays {
public static void main (String [] args) {
// creating a 3x3 array
int [][] board = new int [3][3];

// assigning all values of the 3x3 array to 0
for (int row = 0; row < board.length; row++)
for (int col = 0; col < board[row].length; col++)
board [row | [col] = 0;

System.out.println (” Printing initial values of the 2D array”);
// printing the values of the 2D array
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[i].length; j++)
System.out.print (board[i][]j] + 7 7);
System.out.println (); // used for spacing

}

// assigning the third element in the first row to 1
board [0][2] = 1;
System.out.println (” After changing third element in the first row to 17);
// printing the values of the 2D array
for (int i = 0; i < board.length; i++) {

for (int j = 0; j < board[i].length; j++)

System.out.print (board[i][j] + 7 7);
System.out.println (); // used for spacing

}

N
o0

// assigning the first element in the third row to 1

board [2][0] = 1;

System.out.println (” After changing first element in the third row to 17);

// printing the values of the 2D array

for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[i].length; j++)

System.out.print (board[i][j] + 7 7);

System.out.println (); // used for spacing

}

}
}

Output from the above code:

Printing initial values of the 2D array

000

000

000

After changing third element in the first row to 1
001

000

000

After changing first element in the third row to 1
001

000

100

Manipulating 2-D Arrays:

int [] [] board = new int [3][3];

//assigning all indexes to one value
for (int row = 0; row < board.length; row++)
for (int col = 0; col < board[row].length; col++)
board [row][col] = 0;

//changing one value at a specific index
board [0][2] = 1;

3.3 Suggestions, Warnings, and Resources

e Warning: Be careful with your indexes. If a 2-D Array has a length of 3 and a height of 3, remember
when you print or change the values that you could only use indexes 0 - 2.

e Resource: [Tutorials Point - Array Tutorial

3.4 Common Exceptions

1. ArrayIndexOutOfBoundsException: To fix check all of your loop ranges and all the places that you
changed a value (i.e. array[3] = 3;). Make sure you are never trying to access any index greater than
or equal to the array length (same concept for 2-D Arrays).

2. NullPointerException: To fix check to make sure your array has been initialized.

https://www.tutorialspoint.com/java/java_arrays.htm

4 Methods and Data

The general format of a method:

public static (parameterType parameterName, ...)
returnType MethodName
private <] (2)

Note: The slash represents a choice (i.e. a method can be either public or private).
Note: @ means you don’t include anything.

4.1 Static vs. Non-Static

Static methods belong to the class and only have one copy of the information. For example, a Clock class
should be static, because if you change something on a clock you want it change in all other objects too. Static
methods are used when you used when you aren’t going to use instance variables.

Non-Static methods are instances of the class (belong to the object) and you can use instance variables
within the method. For example, a Student class should be non-static because you want to have all of your
objects be different (different name, id, major, etc)

Note on calling methods: The only time you need to create an object of the class (for example, NonStaticExample
ex = new NonStaticExample()) is when you call a non-static method in a static method (a common call is in
the main method, which is static). If you were to have two non-static methods or a non-static method calling
a static method you wouldn’t need to create an object.

4.1.1 Static Example
// Example of a static class: Clock

public class Clock {
private static int hour, minute;

public Clock (int h, int m){
hour = h;

minute = m;

// default time if no hour and minute are given
public Clock (){
hour = 12;
minute = 0;
}
public static void increaseHour (int num){
hour += num;
}

public static void increaseMinute(int num){
minute 4= num;

// Calling above methods to save work
public static void increaseHour () {

increaseHour (1) ;
}

public static void increaseMinute () {
increaseMinute (1) ;

public String toString(){

7
8
9
10
11
12
13
14
15

16

return String.format (”%02d:%02d” , hour, minute);

}

public static void main (String

Clock c¢1 = new Clock();
System.out. println(”cl —
cl.increaseMinute () ;
System.out.println (”cl —
Clock ¢2 = new Clock (7,
System.out. println (”c2 —
System.out.println (”cl —
c2.increaseHour (2);
System.out. println (”c2 —
System.out. println (”cl —

}

The output from the above code:

cl - Default new clock(should be
cl - adding a minute: 12:01

c2 - created with time 7:15: 07:
cl - after creating c2: 07:15
c2 - after adding 2 hours: 09:15
cl -

4.1.2 Non-Static Example

import java.util.Arrays;

/* Example of a Non—Static Class:
% If you are trying to use
need to create an object
the main just to test).

* When you create multiple objects
are creating SEPERATE objects
This

different for each object).
different name, major, minor,
static if we change John Doe’
However, if the
information
a static environment you are

good

instance variables
inside the

instance variables and methods were static
if we changed John Doe’s

if you only want one copy (for example pi

// returns time with 00:00 format.

(]

Default new clock (should be 12:00):

args){
7+ ocl);

adding a minute: 7 + cl);

15);
created with time 7:15: 7 4 ¢2);
after creating c2: ” + cl);

after adding 2 hours: ” + ¢2);

after c¢2 is incremented by 2: 7 + cl);
12:00): 12:00
15

after c2 is incremented by 2: 09:15

Student
the methods either need to be non—static or you
static method (for example, making an R9 object inside

(like Student sl, s2, ...) in a non—static environment you
(the information stored in the instance variables are

is good because Bobby Joe should be able to have a

year , and id number compared to Julie Sparkles. With non—

s information it wouldn’t change Steve Reeve’s information.

it WOULD change Steve Reeve’s
information (because when creating multiple objects in
using ONE ”version” of the instance variables). This could be
(Math.PI), there should only be one copy of

pi), however that wouldn’t be appropriate for this class.
*/
public class Student {
// instance variables
private String name, year, major, minor;
private int id;
// constructor
public Student (String _name, String _major, String _year, int _id){

this .name = _name;
major _major ;
minor = ”None” ;
year _year;

id = _id;

// Overloading previous
public Student (String _name,

name = _name;
major = _major;
minor = _minor;
year = _year;
id = _id;

constructor

String _minor, String _year, int _-id){

String _major,

o
IS

69

70

public void increaseYear (){
switch (year){

case ”"Freshman”: year = ”Sophomore”; break;
case ”"Sophomore”: year = ”Junior”; break;
case ”Junior”: year = ”Senior”; break;
case ”Senior”: year = ”Super Senior”; break;
default: year = ”Unknown”; break;
}
}
public void changeMajor (String new_major){
major = new-major;
¥
public void addMinor (String _minor){
minor = _minor;
}
//toString
public String toString ()
return String.format (?Name: %s%nMajor: %s%nMinor: %s%nYear: %s%nID Number: %d”, name,
major, minor, year, id);
}
public static void main (String [] args){
Student bob = new Student (”Bobby Joe”, ”Mathematics”, ”Computer Science”, ”Senior”,
90314) ;
Student john = new Student (”John Doe” , ”Computer Science”, ”Freshman”, 90213);
Student julie = new Student (”Julie Sparkles”, ”English”, ”Junior”, 91942);
Student steve = new Student (”Steve Reeves”, ”Physics”, ”Mathematics” , ”Sophomore” ,
90870) ;
//System.out.println (bob);
Student [] ¢s160 = {bob, john, julie, steve};
System.out . println (” Total Students in CS160:\n”);
for (int 1 = 0; i < ¢s160.length; i++){
System.out.println (csl60[i] + ”\n”);
}
julie .changeMajor (” Computer Science”); // because it’s awesome
john .addMinor (” English”) ;
steve.increaseYear () ;
System.out. println (”Updated Total Students:\n”);
for (int 1 = 0; i < ¢s160.length; i++){
System.out.println (csl60[i] + ”\n”);
}
}
}

Output from the above code:
Total Students in CS160:

Name: Bobby Joe

Major: Mathematics
Minor: Computer Science
Year: Senior

ID Number: 90314

Name: John Doe

Major: Computer Science
Minor: None

Year: Freshman

ID Number: 90213

Name: Julie Sparkles
Major: English
Minor: None

Year: Junior

ID Number: 91942

Name: Steve Reeves
Major: Physics
Minor: Mathematics
Year: Sophomore

ID Number: 90870

Updated Total Students:

Name: Bobby Joe

Major: Mathematics
Minor: Computer Science
Year: Senior

ID Number: 90314

Name: John Doe

Major: Computer Science
Minor: English

Year: Freshman

ID Number: 90213

Name: Julie Sparkles
Major: Computer Science
Minor: None

Year: Junior

ID Number: 91942

Name: Steve Reeves
Major: Physics
Minor: Mathematics
Year: Junior

ID Number: 90870

4.1.3 Calling Static and Non-Static Methods

Calling Static Methods:
public class StaticExample {

public static void printMyArray(int [] array){
for (int i = 0; i < array.length; i++){
System.out.print (array[i] + 7 7);
}

System.out.println(); //used for spacing

public static void doubleMyArray(int [] array)
for (int i = 0; i < array.length; i++4)
array [1] *= 2;

public static void main (String [] args) {
int [] myArray = {1, 2, 3, 4};

{

System.out.println (” Initial value of myArray”);

printMyArray (myArray) ;

doubleMyArray (myArray) ;

System.out.println (” Values of myArray after
printMyArray (myArray) ;

// Static method call to another class
double min = Math.min(3, 6);

}

» }

Output from the above code:

calling doubleMyArray”);

1

Initial value of myArray

1234

Values of myArray after calling doubleMyArray
2468

Calling Non-Static Methods:

public class NonStaticExample {
private int [] myArray = {1, 2, 3, 4};
public void printMyArray (){
for (int i = 0; 1 < myArray.length; i++){
System.out. print (myArray[i] + 7 7);
}

System.out.println(); //used for spacing

}

public void doubleMyArray () {
for (int i = 0; i < myArray.length; i++)
myArray [i] *= 2;

public static void main (String [] args){
NonStaticExample ex = new NonStaticExample () ;
System.out.println (” Initial value of myArray”);
ex.printMyArray () ;
ex.doubleMyArray () ;
System.out.println (” Values of myArray after calling doubleMyArray”);
ex.printMyArray () ;

}

Output from the above code:

Initial value of myArray

1234

Values of myArray after calling doubleMyArray
2468

4.2 Pass-by-Value vs Pass-by-Reference

Pass-by-Value are primitive types that are passed into a method’s parameter. These values are not changed
outside the method that initializes them!. The calling method creates a copy of the values so the original
values are never changed. For example:

public class PassByValue {
public static void increment(int n){
QST
System.out.println (”Value of n in increment method: 7 + n);
}
public static void main (String [] args) {
int number = 100;
System.out.println (”Inital value of number: ” 4+ number);
increment (number) ;
System.out.println (” Value of number after calling increment method: ” + number);
}

)

Output from above code:

Inital value of number: 100
Value of n in increment method: 101
Value of number after calling increment method: 100

Pass-by-Reference are always objects. This is because they have their own specified memory (aka it has memory
allocated for the variable), so when a method calls that variable it accesses that place in memory and manipulates
that. Therefore, Pass-by-Reference variables are changed!. For example:

1

w o oNoe

import java.util.Arrays;

public class PassByReference {
public static void multiplyIndexO(int [] i, int p){

i[0] *= p;

}

System.out.println (” Values of i

public static void main (String [] args) {

int [] intArray = {1,

System.out.println (” Inital

2, 3};

multiplyIndex0 (intArray , 9);

System.out.println (” Values of intArray after multipleIndexO:

)8

Inital values of intArray:

Values of i in multiplyIndexO:

Values of intArray after multipleIndexO:

5 Objects

5.1 General Syntax

Creating a constructor:

(1, 2, 3]

[9, 2, 3]

public ClassName (sometimes parameters) {

// code to initialize instance variables

Instantiating an object:

values of intArray:

[9, 2, 3]

9

in multiplyIndex0: ” + Arrays.toString(i));

+ Arrays.toString (intArray));

ClassName objectName = new ClassName (constructor parameters

Note: If there are no parameters in the constructor it would look like:
ClassName objectName = new ClassName ();

5.2 Example

public class Book {
//Instance Variables
private String title;

private String author;

private int year;

//Constructor

//NOTE: public Book (method name must be the exact same
returning anything so the

, needed){}

//as class name. You

are not

//format is just public name (parameters, if

public Book (String _
title = _title;
author = _author;
year = _year;

}

// Getters

title ,

/ /NOTE:

public String getTitle (){

return title;

public String getAuthor () {

return author;

public int getYear ()
return year;

}
//Setters
public void setTitle

{

(String

String _author,

no return value

_title){

int

_year) {

”

+ Arrays.toString (intArray)

if there parameters

if any);

title = _title;

}

public void setAuthor (String _author) {
author = _author;

}

public void setYear (int _year) {
year = _year;

//toString

public String toString () {
String s = "7
s = " Title: ? 4 title -+ 2, 7 -
s += 7 Author: ” 4+ author + 7, 7;
s += " Year: 7 + year;
return s;

}
public static void main (String [] args){
Book bookO = new Book (7It’s Raining from the Clouds”,
?Oh Knowledgeable One”, 1970);
Book bookl = new Book(” Life Without a Cell Phone: The Nightmare of Tweens”,
”Bored and Un—Social”, 2013);
Book book2 = new Book (”Running out of Clever Names” ,
?Addy Moran” , 2016);
Book [] Library = {book0, bookl, book2};
for (int i = 0; i < Library.length; i++)
System.out. println (Library [i]) ;
}

Output from the above code:

Title: It’s Raining from the Clouds,
Title: Life Without a Cell Phone: The Nightmare of Tweens,

Title: Running out of Clever Names, Author: Addy Moran,

5.3

Suggestions, Warnings, and Resources

Resource: Tutorials Point - Method Tutorial

Bitwise Operators
AND (&)

OR ()

NOT or Compliment (~)
XOR (A)

Left shift (<<)

Right shift (>>)

Suggestions, Warnings, and Resources

Resource: Tutorials Point - Bitwise Tutorial

Resource: [Tutorials Point - Bitwise Example

Year:

Author: Oh Knowledgeable One,

2016

Year:
Author: Bored and Un-Social,

1970

Year:

2013

https://www.tutorialspoint.com/java/java_methods.htm
https://www.tutorialspoint.com/java/java_basic_operators.htm
https://www.tutorialspoint.com/java/java_bitwise_operators_examples.htm

7.1

10.
11.
12.
13.
14.
15.
16.

[S

17.

18.

Practice Written Exam

Short Answer

. Write a for loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing comma

at the end.

. Write a while loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing

comma at the end.

Write a do-while loop that prints the numbers 3 to 8 separated by a comma. It is okay to have a trailing
comma at the end.

Using a loop (of any kind) print all numbers that are a multiple of three and that is between 1 and 50
(inclusive) separated by semicolons.

Using a loop (of any kind) print each character of the pre-defined String s separated by a new line.
Using a loop (of any kind) print the pre-defined String s backwards (characters all on the same line).

Using a loop (of any kind) print every other letter of the pre-defined String variable s (characters all on
the same line).

Initialize a 1-D String array called names with the values: Bob, Bobina, Joe.
Create a 1-D double array called averages with a capacity of 10.

Using a loop (of any kind) print the contents of names all on new lines.
Using Arrays.toString() print the values in averages.

Instantiate a 4x4 2-D int array called matrix.

Initialize every value of matrix to 1.

Change the value on the first row, second column to 2.

Print matrix using a for loop.

Inside the predefined class Student create a Student object called student0, who’s name is ” James Bond”
with a student id of 007. Use the following code as guidance:

public class Student {
String id;
String name = ;
public Student (String _-id, String _name){
id = _id;

name = _name;

99 .

Using the same class (Student) and the code from above. Create an Student object called studenti,
who’s name is ”Jr Bond” with a student id of 008.

Create an array of type Student called overAchievers and insert student0Q and studentl (from questions
5 and 6) into the array.

1
2
3
4

7.2 Tracing

Instructions: For each question (unless specified differently) write what would be printed (even if there are

errors earlier in the code that would cause the program not to compile).

import java.util.Arrays;

public class Car {
private String make;
private String model;
private int year;
private String nickName;
private double miles;
public static Car [] carArray;

public Car (String make, String model, int year, String nickName,

setMake (make) ;
setModel (model) ;
setYear (year);
setNickName (nickName) ;
setMiles (miles);

public String getMakeAndModel () {
return make + 7 7 4+ model;

public void setMake (String s) {

make = s;
}
public void setModel (String s) {
model = s;

public void setYear (int i) {
year = i;
}

public void setNickName (String s) {

nickName = s;

}

public void setMiles (double d) {
miles = d;

}

public int getYear () {
return year;

public String getNickName () {
return nickName;

public double getMiles () {
return miles;

public String toString (){
String s = "Make: ” + make;
s 4= 7 Model: 7 + model;
s += " Year: 7 + year;
s 4= 7 Nickname: ” 4 nickName;
s 4= " Mileage: 7 4+ miles;
return s;
}
public static void main (String [] args){
Car c0 = new Car (”Chevy”, ”Camaro”, 2013,
?Lightning McQueen” , 15000) ;

Car ¢l = new Car (”Ford”, "F150”, 1950, "Tow Mater” , 200000);

Car ¢2 = new Car (”Ford”, ”Coupe”, 1936, ”"Doc Hudson” ,
Car ¢3 = new Car (”Mack”, ”Flintstone”, 1980, ”Mack”,
Car [] carsCharacters = {c0, cl, c2, c3};

//Question 1:

System.out.println (carsCharacters [2]) ;

//Question 2:

System.out. println (cl.getYear());

//Question 3:

for (int i = 0; i < carsCharacters.length; i++){

150000) ;
100000) ;

double miles){

66 System.out.println (carsCharacters [i]. getNickName());
67 }

68 }

69 }

8 Programming Quiz Practice Exam

9 Suggestions for Studying and Test Taking

9.1 Written

When reading through code and writing the output: Write your variables on the side and as your variables
change in the program, you change your variables on the side.

Practice writing code in Eclipse and before you run your program guess what the output would be. This
is good practice for testing your own programs and also for the code tracing part of the exam.

If you need more tracing examples (or more coding examples in general), there is a “Programs” tab on the
CS150 homepage. There are also examples on the Progress page.

9.2 Programming Quiz

Redo past recitations and assignments until you no longer need to use the internet, friends, or past code.

Practice writing code in Eclipse. Make up projects and problems or ask a TA and they can give you some
challenges.

Look at code, the more exposure you get to code (whether it’s your own code or not) the easier it is to
understand. Some sample code is under the “Programs” tab and the Progress Page.

9.3 Common Errors

e Incorrect brackets around conditional statements

e Semicolons right after loops and if statements

9.4 Challenges

CodingBat| and Hackerrank offer good extra coding practice.

http://codingbat.com/java
https://www.hackerrank.com/domains/java/java-introduction

ANSWERS ON THE NEXT PAGE

10 Answers to Practice Written and Programming Problems

10.1 Written
1

// could also have (i < 9)
2> for (int i = 3; i <= 8; i++)
3 System.out.print (i + 7,”);

2

// could also have (il <= 8)
> // could also increment outside of print
. int i1 = 3;
while (il < 9)
System.out. print (il4++ + 7,7);

o

3

// could use pre or post increment or increment like in the previous question
2 int 12 = 3;

3 do {

System.out. print (i2 + 7 ,”);

5 1244

6 } while (i2 <= 8);

4. for (int i = 0; i <= 50; i++)
o if (i % 3 = 0)
3 System.out.print (i + ”7;”);

o1 for (int i = 0; i < s.length(); i++)
2 System.out. println (s.charAt(i));

6. for (int i = s.length() — 1; i >= 0; i—)
2 System.out.print (s.charAt(i));

71 for (int i = 0; i < s.length(); i+=2)
2 System.out.print (s.charAt(i));

Note: For answers 4- 7, your implementation may be different (j vs j=, while, do-while,
or for, etc). These answers are just for guidance and there are many ways to correctly
implement these questions.

8. String [] names = "Bob", "Bobina", "Joe";
9. double [] averages = new double [10];
10: for (int i = 0; i < names.length; i++)
» System.out.println (names[i]);
11. System.out.println(Arrays.toString(averages)) ;
12. int matrix [] [] = new int [4][4];

131 for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[row].length; col++)
matrix [row | [col] = 1;

N

14. board[0][1] = 2;

15: for (int row = 0; row < matrix.length; row++){
2 for (int col = 0; col < matrix[row].length; col++)
3 System.out. print (matrix [row][col]) ;

4 System.out.println(); //added for spacing

)

16. Student studentO

new Student ("007", "James Bond");

17. Student studentl = new Student ("008", "Jr Bond");

18: Student [] overAchievers = {student0, studentl };

10.2 Tracing
1. Make: Ford Model: Coupe Year: 1936 Nickname: Doc Hudson Mileage: 150000.0

2. 1950

3. Lightning McQueen
Tow Mater
Doc Hudson
Mack

	Disclaimer
	Loops
	for loops
	while loops
	do-while loops
	Suggestions, Warnings, and Resources
	FAQs

	Arrays
	1D Arrays
	General Syntax

	2D Arrays
	General Syntax

	Suggestions, Warnings, and Resources
	Common Exceptions

	Methods and Data
	Static vs. Non-Static
	Static Example
	Non-Static Example
	Calling Static and Non-Static Methods

	Pass-by-Value vs Pass-by-Reference

	Objects
	General Syntax
	Example
	Suggestions, Warnings, and Resources

	Bitwise Operators
	Suggestions, Warnings, and Resources

	Practice Written Exam
	Short Answer
	Tracing

	Programming Quiz Practice Exam
	Suggestions for Studying and Test Taking
	Written
	Programming Quiz
	Common Errors
	Challenges

	Answers to Practice Written and Programming Problems
	Written
	Tracing

