
10/23/18

1

Interfaces

CS163 Fall 2018

Relatedness of types

n Consider the task of writing classes to represent
2D shapes such as Circle, Rectangle, and
Triangle.

n There are certain attributes or operations that
are common to all shapes:

perimeter, area
n By being a Shape, you promise that you can

compute those attributes, but each shape
computes them differently.

Interface as a contract

n Analogous to the idea of roles or certifications in real life:
q "I'm certified as a CPA accountant. The

certification assures you that I know how to do
taxes, perform audits.”

Compare to:
q "I'm certified as a Shape. That means you can be

sure that I know how to compute my area and
perimeter.”

The area and perimeter of shapes

n Rectangle (as defined by width w and height h):
area = w h
perimeter = 2w + 2h

n Circle (as defined by radius r):
area = p r2

perimeter = 2 p r

n Triangle (as defined by side lengths a, b, and c)
area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)
perimeter = a + b + c

Interfaces
n interface: A list of methods that a class promises to

implement.
q Inheritance encodes an is-a relationship and provides code-sharing.

n An Executive object can be treated as a StaffMember, and
Executive inherits StaffMember’s code.

q An interface specifies what an object is capable of; no code sharing.
n Only method stubs in the interface
n Object can-act-as any interface it implements
n A Rectangle does what you expect from a Shape as long as it

implements the interface.

Java Interfaces
n An interface for shapes:

public interface Shape {
public double area();
public double perimeter();

}

q This interface describes the functionality common to all shapes.
(Every shape knows how to compute its area and perimeter.)

n Interface declaration syntax:
public interface <name> {

public <type> <name>(<type> <name>, ..., <type> <name>);
public <type> <name>(<type> <name>, ..., <type> <name>);
...
public <type> <name>(<type> <name>, ..., <type> <name>);

}
n All methods are public!

10/23/18

2

Implementing an interface
public class Circle implements Shape {

private double radius;

// Constructs a new circle with the given radius.
public Circle(double radius) {

this.radius = radius;
}

// Returns the area of the circle.
public double area() {

return Math.PI * radius * radius;
}

// Returns the perimeter of the circle.
public double perimeter() {

return 2.0 * Math.PI * radius;
}

}

Implementing an interface

n A class can declare that it implements an
interface.
q This means the class needs to contain an

implementation for each of the methods in that
interface.
(Otherwise, the class will fail to compile.)

n Syntax for implementing an interface
public class <name> implements
<interface name> {

...
}

Requirements
n If we write a class that claims act like a Shape but

doesn't implement the area and perimeter methods, it
will not compile.

q Example:
public class Banana implements Shape {

//without implementing area or perimiter
}

q The compiler error message:
Banana.java:1: Banana is not abstract and does
not override abstract method area() in Shape
public class Banana implements Shape {

^

Diagramming an interface

n We draw arrows from the classes to the interface(s)
they implement.

n Like inheritance, an interface represents an is-a
relationship (a Circle is a Shape).

Rectangle
public class Rectangle implements Shape {

private double width;
private double height;

// Constructs a new rectangle with the given
dimensions.
public Rectangle(double width, double height) {

this.width = width;
this.height = height;

}

// Returns the area of this rectangle.
public double area() {

return width * height;
}

// Returns the perimeter of this rectangle.
public double perimeter() {

return 2.0 * (width + height);
}

}

Triangle
public class Triangle implements Shape {

private double a;
private double b;
private double c;

// Constructs a new Triangle given side lengths.
public Triangle(double a, double b, double c) {

this.a = a;
this.b = b;
this.c = c;

}
// Returns a triangle's area using Heron's formula.
public double area() {

double s = (a + b + c) / 2.0;
return Math.sqrt(s * (s – a)*(s – b)*(s - c));

}
// Returns the perimeter of the triangle.
public double perimeter() {

return a + b + c;
}

}

10/23/18

3

Interfaces and polymorphism
n Polymorphism is possible with interfaces.
n Example:

public static void printInfo(Shape s) {
System.out.println("The shape: " + s);
System.out.println("area : " + s.area());
System.out.println("perim: " + s.perimeter());
System.out.println();

}

n Any object that implements the interface may be passed as the
parameter to the above method.
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);

Interface is a type!

Interfaces and polymorphism

n We can create an array of an interface type, and store
any object implementing that interface as an element.

Circle circ = new Circle(12.0);
Rectangle rect = new Rectangle(4, 7);
Triangle tri = new Triangle(5, 12, 13);
Shape[] shapes = {circ, tri, rect};
for (int i = 0; i < shapes.length; i++) {

printInfo(shapes[i]);
}

q Each element of the array executes the appropriate behavior for
its object when it is passed to the printInfo method, or when
area or perimeter is called on it.

Comments about Interfaces

n The term interface also refers to the set of public
methods through which we can interact with objects of a
class.

n Methods of an interface are abstract.
n Think of an interface as an abstract base class with all

methods abstract
n Interfaces are used to define a contract for how you

interact with an object, independent of the underlying
implementation.

n Separate behavior (interface) from the implementation

Commonly used Java interfaces

n The Java class library contains several
interfaces:
q Comparable – allows us to order the elements of an

arbitrary class
q Serializable (in java.io) – for saving objects to

a file.
q List, Set, Map, Iterator (in java.util) –

describe data structures for storing collections of
objects

The Java Comparable interface

n A class can implement the Comparable interface to
define an ordering for its objects.
public interface Comparable<E> {

public int compareTo(E other);
}
public class Employee implements
Comparable<Employee> { … }

n A call of a.compareTo(b) should return:
a value < 0 if a comes "before" b in the ordering,
a value > 0 if a comes "after" b in the ordering,
or 0 if a and b are considered "equal" in the ordering.

Comparable and sorting

n If you implement Comparable, you can sort arbitrary
objects using the method Arrays.sort
StaffMember [] staff = new StaffMember[3];
staff[0] = new Executive(…);
staff[1] = new Employee(…)
staff[2] = new Hourly(…);
staff[3] = new Volunteer(…);
Arrays.sort(staff);

Note that you will need to provide an implementation of
compareTo

10/23/18

4

compareTo tricks

n Delegation trick - If your object's attributes are
comparable (such as strings), you can use their
compareTo:
// sort by employee name
public int compareTo(StaffMember other) {

return name.compareTo(other.getName());
}

