
8/24/18

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

1

Chapter 2: Elementary
Programming

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

2

Motivations
In the preceding chapter, you learned how to
create, compile, and run a Java program. Starting
from this chapter, you will learn how to solve
practical problems programmatically. Through
these problems, you will learn Java primitive data
types and related subjects, such as variables,
constants, data types, operators, expressions, and
input and output.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

3

Objectives
✦ To write Java programs to perform simple computations (§2.2).

✦ To obtain input from the console using the Scanner class (§2.3).
✦ To use identifiers to name variables, constants, methods, and classes (§2.4).

✦ To use variables to store data (§§2.5–2.6).
✦ To program with assignment statements and assignment expressions (§2.6).

✦ To use constants to store permanent data (§2.7).
✦ To name classes, methods, variables, and constants by following their naming conventions (§2.8).
✦ To explore Java numeric primitive data types: byte, short, int, long, float, and double (§2.9.1).

✦ To read a byte, short, int, long, float, or double value from the keyboard (§2.9.2).
✦ To perform operations using operators +, -, *, /, and % (§2.9.3).

✦ To perform exponent operations using Math.pow(a, b) (§2.9.4).
✦ To write integer literals, floating-point literals, and literals in scientific notation (§2.10).

✦ To write and evaluate numeric expressions (§2.11).
✦ To obtain the current system time using System.currentTimeMillis() (§2.12).
✦ To use augmented assignment operators (§2.13).

✦ To distinguish between postincrement and preincrement and between postdecrement and predecrement (§2.14).
✦ To cast the value of one type to another type (§2.15).

✦ To describe the software development process and apply it to develop the loan payment program (§2.16).
✦ To write a program that converts a large amount of money into smaller units (§2.17).

✦ To avoid common errors and pitfalls in elementary programming (§2.18).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

4

Introducing Programming with an
Example

Listing 2.1 Computing the Area of a Circle

This program computes the area of the circle.

Run

ComputeArea

Note: Clicking the blue button runs the code from
Windows. If you cannot run the buttons, see

IMPORTANT NOTE: If you cannot run the buttons, see
www.cs.armstrong.edu/liang/javaslidenote.doc.

Note: Clicking the green button displays the source code
with interactive animation. You can also run the code in
a browser. Internet connection is needed for this button.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

5

Trace a Program Execution
public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

no valueradius

allocate memory
for radius

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

6

Trace a Program Execution
public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

no valueradius

memory

no valuearea

allocate memory
for area

animation

http://www.cs.armstrong.edu/liang/javaslidenote.doc

8/24/18

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

7

Trace a Program Execution
public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

20radius

no valuearea

assign 20 to radius

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

8

Trace a Program Execution
public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

20radius

memory

1256.636area

compute area and assign it
to variable area

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

9

Trace a Program Execution
public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

// Assign a radius
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);

}
}

20radius

memory

1256.636area

print a message to the
console

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

10

Reading Input from the Console
1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Run

Run

ComputeAreaWithConsoleInput

ComputeAverage

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

11

Identifiers
✦ An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).
✦ An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.
✦ An identifier cannot be a reserved word. (See Appendix

A, “Java Keywords,” for a list of reserved words).
✦ An identifier cannot be true, false, or
null.

✦ An identifier can be of any length.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

12

Variables
// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

8/24/18

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

13

Declaring Variables
int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character variable;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

14

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

15

Declaring and Initializing
in One Step

✦ int x = 1;

✦ double d = 1.4;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

16

Named Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

17

Naming Conventions
✦ Choose meaningful and descriptive names.
✦Variables and method names:

– Use lowercase. If the name consists of several
words, concatenate all in one, use lowercase
for the first word, and capitalize the first letter
of each subsequent word in the name. For
example, the variables radius and area, and
the method computeArea.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

18

Naming Conventions, cont.

✦ Class names:
– Capitalize the first letter of each word in

the name. For example, the class name
ComputeArea.

✦ Constants:
– Capitalize all letters in constants, and use

underscores to connect words. For
example, the constant PI and
MAX_VALUE

8/24/18

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

19

Numerical Data Types
 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

20

Reading Numbers from the Keyboard
Scanner input = new Scanner(System.in);
int value = input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

21

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

22

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

23

Remainder Operator
Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number
is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

 Saturday is the 6th day in a week
 A week has 7 days

After 10 days
The 2nd day in a week is Tuesday

(6 + 10) % 7 is 2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

24

Problem: Displaying Time
Write a program that obtains minutes and
remaining seconds from seconds.

RunDisplayTime

8/24/18

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

25

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

26

Exponent Operations
System.out.println(Math.pow(2, 3));
// Displays 8.0
System.out.println(Math.pow(4, 0.5));
// Displays 2.0
System.out.println(Math.pow(2.5, 2));
// Displays 6.25
System.out.println(Math.pow(2.5, -2));
// Displays 0.16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

27

Number Literals
A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and
5.0 are literals in the following statements:

int i = 34;

long x = 1000000;

double d = 5.0;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

28

Integer Literals
An integer literal can be assigned to an integer variable as
long as it can fit into the variable. A compilation error
would occur if the literal were too large for the variable to
hold. For example, the statement byte b = 1000 would
cause a compilation error, because 1000 cannot be stored
in a variable of the byte type.

An integer literal is assumed to be of the int type, whose
value is between -231 (-2147483648) to 231–1
(2147483647). To denote an integer literal of the long type,
append it with the letter L or l. L is preferred because l
(lowercase L) can easily be confused with 1 (the digit
one).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

29

Floating-Point Literals
Floating-point literals are written with a decimal
point. By default, a floating-point literal is treated
as a double type value. For example, 5.0 is
considered a double value, not a float value. You
can make a number a float by appending the letter f
or F, and make a number a double by appending the
letter d or D. For example, you can use 100.2f or
100.2F for a float number, and 100.2d or 100.2D
for a double number.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

30

double vs. float
The double type values are more accurate than the
float type values. For example,
System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

 7 d igits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

8/24/18

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

31

Scientific Notation
Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2, same
as 1.23456e2, is equivalent to 123.456, and
1.23456e-2 is equivalent to 0.0123456. E (or e)
represents an exponent and it can be either in
lowercase or uppercase.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

32

Arithmetic Expressions

)94(9))(5(10
5
43

y
x

xx
cbayx +

++
++-

-
+

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

33

How to Evaluate an Expression
Though Java has its own way to evaluate an
expression behind the scene, the result of a Java
expression and its corresponding arithmetic
expression are the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java
expression. 3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

34

Problem: Converting Temperatures
Write a program that converts a Fahrenheit degree
to Celsius using the formula:

Run

)32)((95 -= fahrenheitcelsius

Note: you have to write
celsius = (5.0 / 9) * (fahrenheit – 32)

FahrenheitToCelsius

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

35

Problem: Displaying Current Time
Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The currentTimeMillis method in the System class returns
the current time in milliseconds since the midnight, January
1, 1970 GMT. (1970 was the year when the Unix operating
system was formally introduced.) You can use this method
to obtain the current time, and then compute the current
second, minute, and hour as follows.

Run

Elapsed
time

Unix Epoch
01-01-1970
00:00:00 GMT

Current Time

Time

System.currentTimeMills()

ShowCurrentTime

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

36

Augmented Assignment Operators

8/24/18

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

37

Increment and
Decrement Operators

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

38

Increment and
Decrement Operators, cont.

 int i = 10;
int newNum = 10 * i++;

int newNum = 10 * i;
i = i + 1;

Same effect as

 int i = 10;
int newNum = 10 * (++i);

i = i + 1;
int newNum = 10 * i;

Same effect as

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

39

Increment and
Decrement Operators, cont.

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

40

Assignment Expressions and
Assignment Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

41

Numeric Type Conversion

Consider the following statements:

byte i = 100;
long k = i * 3 + 4;
double d = i * 3.1 + k / 2;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

42

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is
converted into double.

2. Otherwise, if one of the operands is float, the other is
converted into float.

3. Otherwise, if one of the operands is long, the other is
converted into long.

4. Otherwise, both operands are converted into int.

8/24/18

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

43

Type Casting
Implicit casting

double d = 3; (type widening)

Explicit casting
int i = (int)3.0; (type narrowing)
int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

44

Problem: Keeping Two Digits After
Decimal Points

Write a program that displays the sales tax with two
digits after the decimal point.

RunSalesTax

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

45

Casting in an Augmented Expression

In Java, an augmented expression of the form x1 op=
x2 is implemented as x1 = (T)(x1 op x2), where T is
the type for x1. Therefore, the following code is
correct.
int sum = 0;
sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
46

Software Development Process

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

47

Requirement Specification
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

A formal process that seeks to understand
the problem and document in detail what
the software system needs to do. This
phase involves close interaction between
users and designers.

Most of the examples in this book are simple,
and their requirements are clearly stated. In
the real world, however, problems are not
well defined. You need to study a problem
carefully to identify its requirements.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

48

System Analysis
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Seeks to analyze the business
process in terms of data flow, and
to identify the system’s input and
output.

Part of the analysis entails modeling
the system’s behavior. The model is
intended to capture the essential
elements of the system and to define
services to the system.

8/24/18

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

49

System Design
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

The process of designing the
system’s components.

This phase involves the use of many levels
of abstraction to decompose the problem into
manageable components, identify classes and
interfaces, and establish relationships among
the classes and interfaces.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

50

IPO
Requirement
Specification

System
Analysis

System
Design

Input, Process , Output

Testing

Implementation

Maintenance

Deployment
The essence of system analysis and design is input,
process, and output. This is called IPO.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

51

Implementation
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

The process of translating the
system design into programs.
Separate programs are written for
each component and put to work
together.

This phase requires the use of a
programming language like Java.
The implementation involves
coding, testing, and debugging.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

52

Testing
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Ensures that the code meets the
requirements specification and
weeds out bugs.

An independent team of software
engineers not involved in the design
and implementation of the project
usually conducts such testing.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

53

Deployment
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Deployment makes the project
available for use.

For a Java program, this means
installing it on a desktop or on the
Web.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

54

Maintenance
Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Maintenance is concerned with
changing and improving the
product.

A software product must continue to
perform and improve in a changing
environment. This requires periodic
upgrades of the product to fix newly
discovered bugs and incorporate changes.

8/24/18

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

55

Problem:
Computing Loan Payments

Run

This program lets the user enter the interest
rate, number of years, and loan amount, and
computes monthly payment and total
payment.

12)1(
11 ´+

-

´
=

arsnumberOfYeerestRatemonthlyInt

erestRatemonthlyIntloanAmountmentmonthlyPay

ComputeLoan

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

56

Problem: Monetary Units

This program lets the user enter the amount in
decimal representing dollars and cents and output
a report listing the monetary equivalent in single
dollars, quarters, dimes, nickels, and pennies.
Your program should report maximum number of
dollars, then the maximum number of quarters,
and so on, in this order.

RunComputeChange

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

57

Common Errors and Pitfalls
✦ Common Error 1: Undeclared/Uninitialized

Variables and Unused Variables
✦ Common Error 2: Integer Overflow
✦ Common Error 3: Round-off Errors
✦ Common Error 4: Unintended Integer Division
✦ Common Error 5: Redundant Input Objects

✦ Common Pitfall 1: Redundant Input Objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

58

Common Error 1:
Undeclared/Uninitialized Variables

and Unused Variables
double interestRate = 0.05;
double interest = interestrate * 45;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

59

Common Error 2: Integer Overflow

int value = 2147483647 + 1;
// value will actually be -2147483648

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

60

Common Error 3: Round-off Errors

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

8/24/18

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

61

Common Error 4: Unintended Integer
Division

 int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2;
System.out.println(average);

(a)

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2.0;
System.out.println(average);

(b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

62

Common Pitfall 1: Redundant Input
Objects

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

