

Objectives

- To declare boolean variables and write Boolean expressions using relational operators (§3.2).
- To implement selection control using one-way if statements (§3.3).
- To implement selection control using two-way if-else statements (§3.4)
- To implement selection control using nested if and multi-way if statements (§3.5).
- To avoid common errors and pitfalls in if statements (§3.6)
- To generate random numbers using the Math.random() method (§3.7).
- To program using selection statements for a variety of examples (SubtractionQuiz, BMI, ComputeTax) (§§3.7-3.9).
- To combine conditions using logical operators (\&\&, \|, and !) (§3.10).
- To program using selection statements with combined conditions (LeapYear, Lottery) (§§3.11-3.12).
- To implement selection control using switch statements (§3.13)
- To write expressions using the conditional expression (§3.14).
- To examine the rules governing operator precedence and associativity (§3.15).
- To apply common techniques to debug errors (§3.16).

Motivations

If you assigned a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java, the program would print an invalid result. If the radius is negative, you don't want the program to compute the area. How can you deal with this situation?

The boolean Type and Operators

Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: true or false.

```
boolean b = (1 > 2);
```


Problem: A Simple Math Learning Tool

This example creates a program to let a first grader practice additions. The program randomly generates two single-digit integers number1 and number2 and displays a question such as "What is $7+9$?" to the student. After the student types the answer, the program displays a message to indicate whether the answer is true or false.

Simple if Demo

Write a program that prompts the user to enter an integer. If the number is a multiple of 5 , print HiFive. If the number is divisible by 2 , print HiEven.

The Two-way if Statement
if (boolean-expression) $\{$
statement(s)-for-the-true-case;
\}
else \{
statement(s)-for-the-false-case;
\}

Multiple Alternative if Statements

if-else Example

```
if (radius >= 0) {
    area = radius * radius * 3.14159;
```

 System.out.println("The area for the "
 + "circle of radius " + radius +
 " is " + area) ;
 \}
 else \{
 System.out.println("Negative input")
 \}
 (a)

Note

The else clause matches the most recent if clause in the same block.

Common Errors

Adding a semicolon at the end of an ifclause is a common mistake.
if (radius $>=0$); \longleftarrow Wrong
\{
area $=$ radius* ${ }^{*}$ radius*PI;
System.out.println(
"The area for the circle of radius " +
radius + " is " + area);
\}
This mistake is hard to find, because it is not a compilation error or a runtime error, it is a logic error.
This error often occurs when you use the next-line block style.
Nothing is printed from the preceding statement. To force the else clause to match the first if clause, you must add a pair of braces:
int i = 1;
int $j=2$;
int $k=3$;
if (i > j)
if (i > k)
System.out.println("A");
\}
else
System.out.println("B");
This statement prints B.

CAUTION

Equivalent

(b)

Problem: An Improved Math Learning Tool
This example creates a program to teach a first grade child how to learn subtractions. The program randomly generates two singledigit integers number 1 and number 2 with number1 >= number2 and displays a question such as "What is $9-2$?" to the student. After the student types the answer, the program displays whether the answer is correct.

Problem: Body Mass Index

Body Mass Index (BMI) is a measure of health on weight. It can be calculated by taking your weight in kilograms and dividing by the square of your height in meters. The interpretation of BMI for people 16 years or older is as follows:

Problem: Computing Taxes, cont.

if (status == 0) \{

// Compute tax for single filers
\}
else if (status $==1$) \{
// Compute tax for married file jointly
// or qualifying widow (er)
\}
else if (status == 2) \{
// Compute tax for married file separately
\}
else if (status $==3$) $\{$
// Compute tax for head of household
\}
else \{

Truth Table for Operator !

p Example (assume age $=24$, weight $=140$)
false $!($ age $>18)$ is false, because $($ age $>18)$ is true.
true ! $($ weight $==150)$ is true, because $($ weight $==150)$ is false.

Problem: Computing Taxes

The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2009 are shown below.

Marginal Tax Rate	Single	Married Filing Jointly or Qualifving Widow(er)	Married Filing Separately	Head of Household
10\%	\$0-\$8,350	\$0-\$16,700	\$0-\$8,350	\$0-\$11,950
15\%	\$8,351-533,950	\$16,701-567,900	\$8,351-\$33,950	\$11,951-\$45,500
25\%	\$33,951-582,250	\$67,901-\$137,050	\$33,951-\$68,525	\$45,501-\$117,450
28\%	\$82,251-\$171,550	\$137,051 - \$208,850	\$68,526-\$104,425	\$117,451-\$190,200
33\%	\$171.551-5372.950	\$208.851-5372.950	\$104.426-\$186.475	\$190,201-\$372,950
35\%	\$372,951+	\$372,951+	\$186,476+	\$372,951+
Liang, hntroduction to Java Programming. Tenth Edtion, (c) 2015 Pearson Education, Inc. All				26

Truth Table for Operator \&\&

| | | Truth Table for Operator $\\|$ |
| :--- | :--- | :--- | :--- | :--- |$|$

$\left.\begin{array}{|l|l|l|l|}\hline & & \text { Truth Table for Operator }\end{array}\right\}$

Examples

Here is a program that checks whether a number is divisible by 2

Examples

System.out.println("Is " + number + " divisible by 2 and 3? " +
$(($ number $\% 2=0) \& \&($ number $\% 3=0)$) ; number is divisible by 2 or 3 but not both:

The \& and | Operators

Supplement III.B, "The \& and | Operators"

```
Companion
Website
The \& and | Operators
If x is 1 , what is x after this expression?
\((x>1) \&(x++<10)\)
If x is 1 , what is x after this expression?
(1 > x) \&\& ( 1 > x++)
How about \((1==x) \mid(10>x++)\) ? (1 == x) || (10 > x++) ?


\section*{Problem: Determining Leap Year?}

This program first prompts the user to enter a year as an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100 , or it is divisible by 400 .


\section*{Problem: Lottery}

Write a program that randomly generates a lottery of a twodigit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:
- If the user input matches the lottery in exact order, the award is \(\$ 10,000\).
- If the user input matches the lottery, the award is \$3,000.
- If one digit in the user input matches a digit in the lottery, the award is \(\$ 1,000\).

\section*{switch Statements}
switch (status) \{
case 0 : compute taxes for single filers; break;
case 1: compute taxes for married file jointly; break;
case 2: compute taxes for married file separately; break;
case 3: compute taxes for head of household; break;
default: System.out.println("Errors: invalid status"); System.exit(1);
\}
Llang, Introcuction to Java Programming. Tenth Edition, (c) 2015 Pearson Education, Inc. All

switch Statement Rules

switch Statement Flow Chart




Problem: Chinese Zodiac
Write a program that prompts the user to enter a year and displays the animal for the year.


\section*{Conditional Operator, cont.}
boolean-expression ? exp1 : exp2

\section*{Operator Precedence}
- ()
- var++, var--
+ +, - (Unary plus and minus), ++var,--var
- (type) Casting
- ! (Not)
* *, /, \% (Multiplication, division, and remainder)
+ +, - (Binary addition and subtraction)
- <, <=, >, >= (Relational operators)
- ==, !=; (Equality)
- ^ (Exclusive OR)
- \&\& (Conditional AND) Short-circuit AND
- |l (Conditional OR) Short-circuit OR
* =, +=, -=, *=, /=, \%= (Assignment operator)

\section*{Operator Precedence and Associativity}

The expression in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression in the inner parentheses is executed first.) When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule.

If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left-associative.

\section*{Example}

Applying the operator precedence and associativity rule, the expression \(3+4 * 4>5 *(4+3)-1\) is evaluated as follows:


\section*{Operator Associativity}

When two operators with the same precedence are evaluated, the associativity of the operators determines the order of evaluation. All binary operators except assignment operators are leftassociative.
\(\mathrm{a}-\mathrm{b}+\mathrm{c}-\mathrm{d}\) is equivalent to \(((\mathrm{a}-\mathrm{b})+\mathrm{c})-\mathrm{d}\)
Assignment operators are right-associative. Therefore, the expression
\(\mathrm{a}=\mathrm{b}+=\mathrm{c}=5\) is equivalent to \(\mathrm{a}=(\mathrm{b}+=(\mathrm{c}=5))\)

\section*{Companion Website \\ Operand Evaluation Order}

Supplement III.A, "Advanced discussions on how an expression is evaluated in the JVM."


\section*{Debugger}

Debugger is a program that facilitates debugging. You can use a debugger to
\& Execute a single statement at a time.
\(\uparrow\) Trace into or stepping over a method.
- Set breakpoints.
+ Display variables.
\(\rightarrow\) Display call stack.
\(\uparrow\) Modify variables.
\(\underbrace{}_{\substack{\text { Companaino } \\ \text { Webite }}}\) Debugging in Eclipse

Supplement II.G, Learning Java Effectively with Eclipse
```

