
Lab 14
ArrayLists

Objectives of this Lab:

1. This lab will explore the ArrayList data structure as well as the following aspects
of OO programming in Java:

a. Constructing objects
b. Access modifiers (private, public) and accessing/modifying instance

variables
c. Method usage
d. Client objects
e. toString()
f. equals(Object other)

Introduction
The Java ArrayList is a dynamic array-like data structure that can grow or shrink in
size during the execution of a program as elements are added/deleted. An Array on the
other hand, has a fixed size: once we declared it to be a particular size, that size cannot
be changed.

To use an ArrayList, you first have to import the class:

import java.util.ArrayList;

You can then create a new ArrayList object:

ArrayList<Object> listTest = new ArrayList<Object>();

The Java API has a list of all the methods provided by an ArrayList. See: Java ArrayList
API.

Lab Assignment

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Please complete this lab individually. You are always welcome to bring any lab material
and questions to office hours. We will use Animal.java and GuinnessBook.java.
Please download the following files:

● animalList.txt
● Animal.java
● GuinnessBook.java

Previously, you have used arrays to store and manipulate collections of primitives and
objects. However, Java arrays can only represent collections of a fixed size. This is a
limitation as the programmer often does not know how many items will need to be
stored in advance.
Many programming languages, including Java, provide programmers with array-like
data structures that are resizable. In Java, this data structure is ArrayList. An ArrayList
internally maintains an array of data that is resized to accomodate additional elements.
ArrayList also allows the programmer to add/remove items at arbitrary indices and even
find the index of a particular item.
Complete the implementation of Animal.java, by adding the following methods:

● Getters and setters for name and topSpeed. Print an error if topSpeed is over 70
or below 0 and leave the speed alone.

● A constructor that takes in a String for the name and an int for the topSpeed. Use
the setters to set the instance variables.

● a toString() method that returns a string with that animal's information. EX: Name:
elephant Top Speed: 25

● an equals(Object other) method that returns True if two animals have the same
speed within 2mph, and False otherwise (recall that equals takes in an instance
of Object rather than Animal, in order to override the default implementation of
equals).

When implementing constructors, getters/setters, toString or equals methods you can
use Eclipse to help you write those methods - under the "Source" tab of Eclipse there
are options for generating stubs for those methods.

In GuinnessBook.java: Complete the code for the constructor. You just need to add
code that adds the animals to the landAnimals ArrayList.

http://www.cs.colostate.edu/~cs163/CurrentSemester/recitations/R14/src/animalList.txt
http://www.cs.colostate.edu/~cs163/CurrentSemester/recitations/R14/src/Animal.java
http://www.cs.colostate.edu/~cs163/CurrentSemester/recitations/R14/src/GuinnessBook.java

The toString() method. This can make use of Animal's toString()method. It
should return a string representation of all the elements in the arrayList. EX:

Name: giraffe Top Speed: 32

Name: pronghorn Top Speed: 61

Name: reindeer Top Speed: 32

Testing

Test your code in the main method.

Follow the instructions in main and testGuinnessBook.

Turn In
Show your work to your TA before submitting to GitHub. Submit all of your files with
correct headers to GitHub here: https://classroom.github.com/a/6VcaTWrA

https://classroom.github.com/a/6VcaTWrA

