
Ch 14 – Bitwise, Equals, toString,
and Exceptions

Bitwise Operators

Java Bitwise Operators

Symbol Operator

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< LEFT SHIFT

>> RIGHT SHIFT
CS 160, Spring Semester 2014 3

• Java has six bitwise operators:

Java AND and OR

CS 160, Spring Semester 2014 4

A B A & B

0 0 0

0 1 0

1 0 0

1 1 1

A B A | B

0 0 0

0 1 1

1 0 1

1 1 1

AND operator (&) OR operator (|)

Java XOR and NOT

CS 160, Spring Semester 2014 5

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

A ~A

0 1

1 0

XOR operator (^) NOT operator (~)

Binary to Decimal

Decimal Binary Decimal Binary

0 0000b 8 1000b

1 0001b 9 1001b

2 0010b 10 1010b

3 0011b 11 1011b

4 0100b 12 1100b

5 0101b 13 1101b

6 0110b 14 1110b

7 0111b 15 1111b
CS 160, Spring Semester 2014 6

Binary to Decimal

CS 160, Spring Semester 2014 7

• 0-9 are used for decimal numbers (base-10):
– 149 = 1*102 + 4*101 + 9*100

• 0-1 are used for binary numbers (base-2):
– 1010b = 1*23 + 0*22 + 1*21 + *20 = 8 + 2 = 10

• Example:
– 10111b in decimal?

– 1*24 + 0*23 + 1*22 + 1*21 + 1*21 = 16 + 4 + 2 + 1 = 23

– What is 14 in binary?

– 8 + 4 + 2 = 1*23 + 1*22 + 1*21 + 0*20 = 1110b

Bitwise Operator Examples

• 4-bit numbers:
– 6 & 5 = 0110b & 0101b = 0100b = 4

– 6 | 5 = 0110b | 0101b = 0111b = 7

– 6 ^ 5 = 0110b ^ 0101b = 0011b = 3

– ~6 = ~0110b = 1001b = 9

• 8-bit numbers:
– 6 << 3 = 00000110b << 3 = 00110000b = 48 (6 * 8)

– 48 >> 4 = 00110000b >> 4 = 00000011b = 3 (48 / 16)

CS 160, Spring Semester 2014 8

Masking Operations

• Clearing bits:
– x = 00101001b = 41

– want to clear top 4-bits

– x = x & 00001111b = x & 15 = 00001001b = 9

• Setting bits:
– x = 00101001b = 41

– want to set bottom 4-bits

– x = x | 00001111b = x | 15 = 00101111b = 47

CS 160, Spring Semester 2014 9

Methods (toString, equals)

CS163 Fall 2018

The toString() method
• tells Java how to convert an object into a String

• called when an object is printed or concatenated to a String:
Point p = new Point(7, 2);
System.out.println(”p: " + p);

– Same as:

System.out.println("p: " + p.toString());

• Every class has a toString(), even if it isn't in your code.

– The default is the class's name and a hex (base-16) hash-code:

Point@9e8c34

11

toString() implementation

public String toString() {
 code that returns a suitable String;
}

– Example: toString() method for our Student class:

public String toString(){
return ”name: " + name+ "\n"

 + ”id: " + id + "\n"
 + ”average: " + average;
}

• // SHOW Eclipse example of Student class

12

toString in ArrayLists and other
collections call toString

automatically• ArrayList<Student> students = new ArrayList<>();

• …
• System.out.println(students);

• println(students) calls students.toString(), which
automatically calls s.toString() for every point s

// SHOW Eclipse example of Student class

13

Primitive Equality

• Suppose we have two integers i and j
• How does the statement i==j behave?

• i==j if i and j contain the same value

14

Object Equality
• Suppose we have two pet instances pet1

and pet2
• How does the statement pet1==pet2

behave?

15

Object Equality
• Suppose we have two pet instances pet1

and pet2
• How does the statement pet1==pet2

behave?

• pet1==pet2 is true if both refer to the
same object

• The == operator checks if the addresses of
the two objects are equal

• May not be what we want!

16

Object Equality - extended
• If you want a different notion of equality define

your own .equals() method.

• Use pet1.equals(pet2) instead of
pet1==pet2

• The default definition of .equals() is the
value of ==

 but for Strings the contents are compared

17

.equals for the Pet class

public boolean equals (Object other) {
if (!other instanceof Pet) {

return false;
 }
 Pet otherPet = (Pet) other;

return ((this.age == otherPet.age)
 &&(Math.abs(this.weight – otherPet.weight) < 1e-8)
 &&(this.name.equals(otherPet.name)));
}

// SHOW ECLIPSE EXAMPLE OF Equals code.

18

Exceptions

CS 160, Spring Semester 2014 19

20

Exception Types

21

System Errors

System errors are thrown by JVM
and represented in the Error class.
The Error class describes internal
system errors. Such errors rarely
occur. If one does, there is little
you can do beyond notifying the
user and trying to terminate the
program gracefully.

22

Exceptions
Exception describes errors
caused by your program
and external
circumstances. These
errors can be caught and
handled by your program.

23

Runtime Exceptions

RuntimeException is caused by
programming errors, such as bad
casting, accessing an out-of-bounds
array, and numeric errors.

24

The finally Clause

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

25

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose no
exceptions in the
statements

26

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is
always executed

27

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Next statement in the
method is executed

28

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

29

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The exception is
handled.

30

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is
always executed.

31

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The next statement in
the method is now
executed.

32

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

statement2 throws an
exception of type
Exception2.

33

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Handling exception

34

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Execute the final block

35

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Rethrow the exception
and control is
transferred to the caller

36

Writing Data Using PrintWriter

RunWriteData

