
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 2: Beginning to Program

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Kris Brown

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 2

Motivations
● Solve practical problems programmatically
● Java primitive data types
● Strings
● Input/Output
● Constants

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Variables

A named container that holds a specific piece
of data.

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 4

Declaring Variables
int x; // Declare x to be an
 // integer variable;

double radius; // Declare radius to
 // be a double variable;

char a; // Declare a to be a
 // character variable;
String s; // Declare s to be a
 // String variable;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 5

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

s = “Java”; // Assign “Java” to s

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 6

Declaring and Initializing
in One Step

● int x = 1;

● double d = 1.4;

● String s = “Java”;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 7

Variable names
● A variable name is a sequence of characters that consist

of letters, digits, underscores (_), and dollar signs ($).
● A variable name must start with a letter, an underscore

(_), or a dollar sign ($). It cannot start with a digit.
● A variable name cannot be a reserved word. (See

Appendix A, “Java Keywords,” for a list of reserved
words).

● A variable name cannot be true, false, or
null.

● A variable name can be of any length.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 8

Numerical Data Types

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Printing

System.out.println(“Hello World”);

- get the computer to print something to the
console

- println prints a line and adds a new line at
the end

- print prints the line and continues on the
same line

- use for DEBUGGING!!
9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Simple String Operations

Concatenation:

Use the “+” (plus sign) to concatenate strings

System.out.println(mm + “ “ + yy);

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Simple String Operations

The length() method

String theName = “Donald Duck”;
int len = theName.length();

What is returned?

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 12

Reading Input from the Console
1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Reading Numbers from the Keyboard
Scanner input = new Scanner(System.in);
int value = input.nextInt();

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Variables
// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 15

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

no valueradius

allocate memory
for radius

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

no valueradius

memory

no valuearea

allocate memory
for area

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

20radius

no valuearea

assign 20 to radius

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

20radius

memory

1256.636area

compute area and assign it
to variable area

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

20radius

memory

1256.636area

print a message to the
console

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Lecture 2

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Named Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Naming Conventions
● Choose meaningful and descriptive names.
● Variables and method names:

– Use lowercase. If the name consists of several
words, concatenate all in one, use lowercase
for the first word, and capitalize the first letter
of each subsequent word in the name. For
example, the variables radius and area, and
the method computeArea.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

Naming Conventions, cont.

● Class names:
– Capitalize the first letter of each word in

the name. For example, the class name
ComputeArea.

● Constants:
– Capitalize all letters in constants, and use

underscores to connect words. For
example, the constant PI and
MAX_VALUE

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 24

Numeric Operators

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

PEMDAS

What is it?

25

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.
5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Modulo/Remainder Operator
Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number
is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 29

Exponent Operations
System.out.println(Math.pow(2, 3));
// Displays 8.0
System.out.println(Math.pow(4, 0.5));
// Displays 2.0
System.out.println(Math.pow(2.5, 2));
// Displays 6.25
System.out.println(Math.pow(2.5, -2));
// Displays 0.16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

Number Literals
A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and
5.0 are literals in the following statements:

int i = 34;
long x = 1000000;
double d = 5.0;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Integer Literals
An integer literal can be assigned to an integer variable as
long as it can fit into the variable.

byte b = 1000;

An integer literal is assumed to be of the int type, whose
value is between -231 (-2147483648) to 231–1
(2147483647).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

Floating-Point Literals
Floating-point literals are written with a decimal
point. By default, a floating-point literal is treated
as a double type value.

double d1 = 100.2d;
float f1 = 100.2f;
float f2 = 100.3F;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

double vs. float
The double type values are more accurate than the
float type values. For example,
System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

Scientific Notation
Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2, same as
1.23456e2, is equivalent to 123.456, and 1.23456e-2
is equivalent to 0.0123456. E (or e) represents an
exponent and it can be either in lowercase or
uppercase.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Arithmetic Expressions

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

How to Evaluate an Expression
Though Java has its own way to evaluate an
expression behind the scene, the result of a Java
expression and its corresponding arithmetic
expression are the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java
expression.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

Augmented Assignment Operators

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 38

Increment and
Decrement Operators

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

Increment and
Decrement Operators, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

Increment and
Decrement Operators, cont.

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

Assignment Expressions and
Assignment Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

Numeric Type Conversion

Consider the following statements:

byte i = 100;
long k = i * 3 + 4;
double d = i * 3.1 + k / 2;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.
2. Otherwise, if one of the operands is float, the other is

converted into float.
3. Otherwise, if one of the operands is long, the other is

converted into long.
4. Otherwise, both operands are converted into int.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

Type Casting
Implicit casting
 double d = 3; (type widening)

Explicit casting
 int i = (int)3.0; (type narrowing)
 int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Casting in an Augmented Expression

In Java, an augmented expression of the form
x1 op= x2 is implemented as x1 = (T)(x1 op x2),
where T is the type for x1. Therefore, the following
code is correct.
int sum = 0;
sum += 4.5; // sum becomes 4 after this statement

sum += 4.5; // is equivalent to sum = (int)(sum + 4.5).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 46

Common Errors and Pitfalls
● Common Error 1: Undeclared/Uninitialized

Variables and Unused Variables
● Common Error 2: Integer Overflow
● Common Error 3: Round-off Errors
● Common Error 4: Unintended Integer Division
● Common Error 5: Redundant Input Objects

● Common Pitfall 1: Redundant Input Objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 47

Common Error 1:
Undeclared/Uninitialized Variables

and Unused Variables
double interestRate = 0.05;
double interest = interestrate * 45;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 48

Common Error 2: Integer Overflow

int value = 2147483647 + 1;
// value will actually be -2147483648

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 49

Common Error 3: Round-off Errors

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 50

Common Error 4: Unintended Integer
Division

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 51

Common Pitfall 1: Redundant Input
Objects

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

