
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 6: Methods

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Kris Brown

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 2

Opening Problem
Find the sum of integers from 1 to 10, from 20 to 30, and
from 35 to 45, respectively.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 3

Problem
int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 30; i++)
 sum += i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)
 sum += i;
System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 4

Problem
int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 30; i++)
 sum += i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)
 sum += i;
System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 5

Solution
public static int sum(int i1, int i2) {
 int sum = 0;
 for (int i = i1; i <= i2; i++)
 sum += i;
 return sum;
}

public static void main(String[] args) {
 System.out.println("Sum from 1 to 10 is " + sum(1, 10));
 System.out.println("Sum from 20 to 30 is " + sum(20, 30));
 System.out.println("Sum from 35 to 45 is " + sum(35, 45));
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 6

Defining Methods
A method is a collection of statements that are
grouped together to perform an operation.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 7

Defining Methods
A method is a collection of statements that are
grouped together to perform an operation.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 8

Method Signature
Method signature is the combination of the method name and the
parameter list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 9

Formal Parameters
The variables defined in the method header are known as
formal parameters.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 10

Actual Parameters
When a method is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 11

Return Value Type
A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a
value, the returnValueType is the keyword void. For example, the
returnValueType in the main method is void.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 12

Calling Methods, cont.
animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Trace Method Invocation
i is now 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Trace Method Invocation
j is now 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 15

Trace Method Invocation
invoke max(i, j)

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

Trace Method Invocation
invoke max(i, j)

Pass the value of i to num1
Pass the value of j to num2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

Trace Method Invocation
declare variable result

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

Trace Method Invocation
(num1 > num2) is true since num1

is 5 and num2 is 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Trace Method Invocation
result is now 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Trace Method Invocation
return result, which is 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Trace Method Invocation
return max(i, j) and assign the

return value to k

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Trace Method Invocation
Execute the print statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

CAUTION
A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Your Turn!

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

iClicker Quiz

25

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Call Stacks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Trace Call Stack

i is declared and initialized

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

Trace Call Stack

j is declared and initialized

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 29

Trace Call Stack

Declare k

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

Trace Call Stack

Invoke max(i, j)

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Trace Call Stack

pass the values of i and j to num1
and num2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

Trace Call Stack

Declare result

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

Trace Call Stack

(num1 > num2) is true

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

Trace Call Stack

Assign num1 to result

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Trace Call Stack

Return result and assign it to k

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

Trace Call Stack

Execute print statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

Passing Parameters
public static void nPrintln(String message, int n) {
 for (int i = 0; i < n; i++)
 System.out.println(message);
}

Suppose you invoke the method using
nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using
nPrintln(“Computer Science”, 15);

What is the output?

Can you invoke the method using
nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Pass by Value

38

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

Pass by Value, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

Overloading Methods
Overloading the max Method

public static double max(double num1, double
num2) {

 if (num1 > num2)
 return num1;
 else
 return num2;
}

TestMethodOverloading Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a method, but the
compiler cannot determine the most specific
match. This is referred to as ambiguous
invocation. Ambiguous invocation is a
compile error.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

Ambiguous Invocation
public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }

 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

Scope of Local Variables
A local variable: a variable defined inside a

method.
Scope: the part of the program where the

variable can be referenced.
The scope of a local variable starts from its

declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

Scope of Local Variables, cont.
You can declare a local variable with the
same name multiple times in different
non-nesting blocks in a method, but you
cannot declare a local variable twice in nested
blocks.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Scope of Local Variables, cont.
A variable declared in the initial action part of a for loop
header has its scope in the entire loop. But a variable
declared inside a for loop body has its scope limited in the
loop body from its declaration and to the end of the block
that contains the variable.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 46

Scope of Local Variables, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 47

Scope of Local Variables, cont.
// Fine with no errors
public static void correctMethod() {
 int x = 1;
 int y = 1;
 // i is declared
 for (int i = 1; i < 10; i++) {
 x += i;
 }
 // i is declared again
 for (int i = 1; i < 10; i++) {
 y += i;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 48

Scope of Local Variables, cont.
// With errors
public static void incorrectMethod() {
 int x = 1;
 int y = 1;
 for (int i = 1; i < 10; i++) {
 int x = 0;
 x += i;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 49

Method Abstraction
You can think of the method body as a black box
that contains the detailed implementation for the
method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 50

Benefits of Methods
• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation
from the user.

• Reduce complexity.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 51

Case Study: Generating Random
Characters

Computer programs process numerical data and characters.
You have seen many examples that involve numerical data.
It is also important to understand characters and how to
process them.
As introduced in Section 2.9, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 in
decimal). To generate a random character is to generate a
random integer between 0 and 65535 using the following
expression: (note that since 0 <= Math.random() < 1.0, you
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 52

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 53

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 54

Case Study: Generating Random
Characters, cont.

As discussed in Chapter 2., all numeric operators
can be applied to the char operands. The char
operand is cast into a number if the other operand
is a number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 55

Case Study: Generating Random
Characters, cont.

To generalize the foregoing discussion, a random character
between any two characters ch1 and ch2 with ch1 < ch2
can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 56

The RandomCharacter Class
// RandomCharacter.java: Generate random characters
public class RandomCharacter {
 /** Generate a random character between ch1 and ch2 */
 public static char getRandomCharacter(char ch1, char ch2) {
 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
 }

 /** Generate a random lowercase letter */
 public static char getRandomLowerCaseLetter() {
 return getRandomCharacter('a', 'z');
 }

 /** Generate a random uppercase letter */
 public static char getRandomUpperCaseLetter() {
 return getRandomCharacter('A', 'Z');
 }

 /** Generate a random digit character */
 public static char getRandomDigitCharacter() {
 return getRandomCharacter('0', '9');
 }

 /** Generate a random character */
 public static char getRandomCharacter() {
 return getRandomCharacter('\u0000', '\uFFFF');
 }
}

TestRandomCharacter

Run

RandomCharacter

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 57

Stepwise Refinement (Optional)
The concept of method abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose it into subproblems. The
subproblems can be further decomposed into
smaller, more manageable problems.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Your Turn!

58

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

iClicker Quiz

59

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Misc. Slides

60

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 61

PrintCalender Case Study
Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

PrintCalendar Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 62

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 63

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 64

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 65

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 66

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 67

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 68

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 69

Implementation: Top-Down

A Skeleton for printCalendar

Top-down approach is to implement one method in the
structure chart at a time from the top to the bottom. Stubs
can be used for the methods waiting to be implemented. A
stub is a simple but incomplete version of a method. The
use of stubs enables you to test invoking the method from
a caller. Implement the main method first and then use a
stub for the printMonth method. For example, let
printMonth display the year and the month in the stub.
Thus, your program may begin like this:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 70

Implementation: Bottom-Up
Bottom-up approach is to implement one method in the
structure chart at a time from the bottom to the top. For
each method implemented, write a test program to test it.
Both top-down and bottom-up methods are fine. Both
approaches implement the methods incrementally and
help to isolate programming errors and makes debugging
easy. Sometimes, they can be used together.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 71

Benefits of Stepwise Refinement

Simpler Program

Reusing Methods

Easier Developing, Debugging, and Testing

Better Facilitating Teamwork

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 72

Calling Methods
Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 73

void Method Example

This type of method does not return a value. The method
performs some actions.

TestVoidMethod Run

TestReturnGradeMethod Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 74

Pass by Value

This program demonstrates passing values
to the methods.

Increment Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 75

Pass by Value

Testing Pass by value

This program demonstrates passing values
to the methods.

TestPassByValue Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 76

Modularizing Code
Methods can be used to reduce redundant coding
and enable code reuse. Methods can also be used to
modularize code and improve the quality of the
program.

GreatestCommonDivisorMethod Run

PrimeNumberMethod Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 77

Case Study: Converting Hexadecimals
to Decimals

Write a method that converts a hexadecimal
number into a decimal number.

ABCD =>

 A*16^3 + B*16^2 + C*16^1+ D*16^0

= ((A*16 + B)*16 + C)*16+D

= ((10*16 + 11)*16 + 12)*16+13 = ?

Hex2Dec Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 78

Reuse Methods from Other Classes
NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the max method
using ClassName.methodName (e.g., TestMax.max).

