Chapter 6: Methods

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Kris Brown

A

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 30, and
from 35 to 45, respectively.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Problem

int sum = 0;
for (int i = 1; 1 <= 10; i++)
sum += 1;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int 1
sum += 1;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)

sum += 1;
System.out.println("Sum from 35 to 45 is " + sum

20; i <= 30; i++)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Problem

int sum =
for (int 1
sum += 1;

0;
=1; 1 <= 10; i++)

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int 1

20;

sum += 1i;

i <= 30;

i++)

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int 1i
sum += 1i;

= 35;

i <= 45;

it++)

S\

System.out.println("Sum from 35 to 45 is " + sum

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

g

Solution

public static int sum(int 11, int 12) {
int sum = 0O;
for (int1=11;1<=12; 1++)
sum +=1;
return sum;

;

public static void main(String[] args) {
System.out.println("Sum from 1 to 10 1s " +|sum(1, 10
System.out.println("Sum from 20 to 30 1s " +|sum(20,
System.out.println("Sum from 35 to 45 1s " +{sum(33,

h

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Defining Methods

A method 1s a collection of statements that are
grouped together to perform an operation.

Define a method

Invoke a method

public static int max(int numl, int num2)
int result;

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

}

{

int z = max

(ji* ’ ‘i«/) ;
actual parameters
(arguments)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Defining Methods

A method 1s a collection of statements that are
grouped together to perform an operation.

Define a method Invoke a method
return value method Earia]
modifier type name parameters
thod k/ k/ \ int z = max(x, y);
E;dg’r —»public static int|max(int numl, int num2)|1{ 1\
[. actual parameters
int result; e —
method —_ .
body 1€ (RO > HiE2 parameter list
result = numl;
etse method
result = numZ; signature

return result ; €= returnvalue

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Method Signature

Method signature 1s the combination of the method name and the
parameter list.

Define a method Invoke a method
_ return value method Earia]
modifier type name parameters
thod ® = \x int z = max(x, v);
?:ad;’r —»public static int|max(int numl, int num2)|1{ 1\
[. actual parameters
int result; (argumerits)
method —_ .
body 1€ (RO > HiE2 parameter list
result = numl;
etse method
result = numZ; signature

return result ; €= returnvalue

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Formal Parameters

The variables defined in the method header are known as
formal parameters.

Define a method Invoke a method
return value method Earia]
modifier type / name parameters
int z = max(x E-
method bli e il | 2 g "‘ r g
e —>» P ic static int|max(int |num { T
int result; adaigﬁ?rﬁ;em
method >
body parameter list

if (numl > num?2)

result = numl;
else ”
1t = o method
Fesl = DL signature

return result ; €= returnvalue

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Actual Parameters

When a method 1s invoked, you pass a value to the parameter. This
value 1s referred to as actual parameter or argument.

Define a method Invoke a method
_ return value method Earia]
modifier type name parameters
/ e \ int z = max(x, y):
method ® =
b qer —»public static int|max(int numl, int num2) | 1\ 1«
[. actual parameters
int result; e —
method —_ .
body 1€ (RO > HiE2 parameter list
result = numl;
etse method
result = numZ2; signature

return result ; €= returnvalue

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Return Value Type

A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a
value, the returnValueType 1s the keyword void. For example, the
returnValueType in the main method 1s void.

Define a method Invoke a method
return value method el
modifier type name parameters
thod y 4 k/ \ int z = max(x, V)
ol —ppublic static [int|max(int nunl, int num2) |{ T 1«
[. actual parameters
int result; (arguments)
method —_ .
body 1F (RGHL > B2 parameter list
result = numl;
=lae method
result = num?2; signature

return result]|; €= return value

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Calling Methods, cont.

-

-
P T Y L P L T T TV R - SYTTTTTIN
. -

.

|nt|=5,
int j =
i nt k=max(|

Systemout. printl n(

"and " +j + " is

i)‘,

"The maxi mim between "

.....

Tay

public static vou:l mai n(String[] args) {

pass the value of i
pass the value of]

=

»e?
L1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

public static int max(int nurmi, int nun®2) {

3.

int result;

if (nunl > nun2)
result = nuni;
el se
result = nun2;

return resul t;

rights reserved.

antmation

Trace Method Invocation

11sn0w5]

ubllc static void nai n(Strin
|nt I =5

7{1

ar§'

Int | —2
int k =nax(i, j);

Systemout. pri ntl n(
"The maxi nrum between " + i
"and " +j +" is " +Kk);

+

int resul t;

if (nunl > nun®)
result = nuni;

el se
resul t hun®;

return resul t;

public static int nax(int nuni,

int nun®) {

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

antmation

Trace Method Invocation

] 1s now 2]
publ ic static void mai n(String[] args) { public static int max(int nunl, int nun) {
int i =5; int resul t;
Lint j =2 |
int k =nax(i, J); if (nunl > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The nmaxi numbetween " +i + result = nun;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

invoke max(i, j)]
publ ic static void nai n(String[] ar { public static int max(int nunl, int nun) {
int i =5; int resul t;
int j =2;
int k =lnax(i, j); | if (nuni > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The maxi mum between " +i + result = nung;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

invoke max(i, j)
Pass the value of i to numl
Pass the value of j to num?2

publ ic static void mai n(String[] args) { public staticlint max(int nunl, int nun®)| {
ul g,

int i =5; —

int j =2 N
int k =nax(i, 77 if (nunl > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The maxi mum between " +i + result = nun®;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

[declare variable result
publ ic static void mai n(String[] args) { public static int max(int nurl, int nun) {
int i =5 — ult;
int j =2 M |
int k =nax(i, 77 if (nunl > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The maxi mum between " +i + result = nun®;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

(num1 > num?2) is true since numl
is 5 and num?2 is 2

publ ic static void mai n(String[] args) { public static int max(int nurl, int nun) {
int i =5; | _intTesult;
int j =2 N
int k =nax(i, 77 [i f (nunl > nun®) |
result = nuni;
Systemout. pri ntl n(el se
"The maxi mum between " +i + result = nun®;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

result 1s now 5

publ ic static void mai n(String[] args) { public static int max(int nurl, int nun) {
int i =5; | _intTesult;
int j =2 N
int k =nax(i, 77 if (nunMl > nun®)
[result = nuni; |
Systemout. pri ntl n(el se
"The nmaxi numbetween " +i + result = nun;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

[return result, which is 5
publ ic static void mai n(String[] args) { public static int max(int nurl, int nun) {
inti =5 | intresult;
int j =2 N
int k =nax(i, 77 if (nunl > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The naxi num between " +i + result = nung;
"and " +j +" is " +Kk);
} | return result;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

return max(1, j) and assign the
return value to k

publ ic static void mai n(String[] args) { public static int max(int nunl, int nun) {
int i =5; int resul t;
int | =2;
[int k = max(i, j); | if (nurl > nun®)
result = nuni;
Systemout. pri ntl n(el se
"The maxi mum between " +i + result = nun®;
"and " +j +" is " +Kk); ~——_
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Method Invocation

Execute the print statement

publ ic static void mai n(String[] args) { public static int max(int nunl, int nun) {
int i =5; int resul t;
int j =2
int kK =nmax(i, j); if (nunl > nun®)
result = nuni;
Systemout. pri ntl n{ el se
"The maxi mrum between " +i + result = nun®;
"and " +j +" is " +Kk);
} return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

CAUTION

A return statement is required for a value-returning method. The
method shown below 1n (a) 1s logically correct, but 1t has a
compilation error because the Java compiler thinks 1t possible that
this method does not return any value.

public static int sign(int n) { public static int sign (int n) {
if (n > 0) Should be if (n > ©)
return 1; 3 return 1;
else if (n == 0) else if (n == 0)
return 0O; return 0O;
else if (n < 0) else
return -1; return —1;
} }

@) \

To fix this problem, delete if (n < 0) in (a), so that the compiler
see a return statement to be reached regardless of how the if
statement 1s evaluated.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

t'

Your Turn!

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,iQf. All
rights reserved.

1Clicker Quiz

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,i%c. All
rights reserved.

Call Stacks

Activation record for Activation record for
the max method the max method
result: result: 5--------------------i
num2: 2 (<= num2: 2 I
numl: 5 <-+-: numl: 5 :
Activation record Activation record for 1! Activation record for Activation record :
for the main method| | the main method 11 |the main method for the main method | 1
e k:] k: k: S |<' |Stackis empty
T A2 j:2--l= a2 R
iy 5 T1: Sp==1 145 i 5
(a) The main (b) The max (¢) The max method (d) The max method is (e) The main
method is invoked. method is invoked. is being executed. finished and the return method is finished.

value is sent to k.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

11s declared and initialized

public static void nain(String[]\?rgs) {

[int T =5:
int | =2;
int k = max(i, j);

Systemout. print| n(
"The maxi mum between " + i1 +
) "and " +j +" is " + k);

public static int max(int nunl, int nun®) { \\\\\\\\\\
int result;

if (nunl > nun®)

1.5

result = nuni: The main method
el se is invoked.
result = nun®:

return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

j 1s declared and initialized

public static void main(String[] args) {

int i =05;
(1Nt | = Z; [
int k =

n'aX(i, J)’ \
Systemout. print| n(
"The maxi mum between " + i +

p A S

public static int max(int numl, int nun2) { *nz
5

. J:
int result; i

if (nunl > nun®)

result = nuni: The main method
el se is invoked.
result = nun®:

return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

Declare k

public static void nmain(String[] args) {

int i =5;
int | =2;
=max(i, J);

Systemout. println
"The nmaxi mum between " + |

"and " +j +" is " + k);
} \ Space required for the

public static int max(int numl, int nun2) {

W
k:

- J 2
int result; i5
if (numl > nun?)
result = nuni: The main method
el se is invoked.
result = nun®:

return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

Invoke max(i, j)

public static void main(String[] args) {
int i =05;
int | =2;
int k =maxi;, 17 | |

Systemout. print| n(
"The maxi mum between " + 1 |+
"and " +j +" is " + k);
} Space required for the
main method

|
public static int nmax(int numl, int nun2) {
int result;

if (numl > nun?)
result = nuni: The main method

el se is invoked.
resul t nuny;

k:
32
1.5

return resul t;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

pass the values of 1 and j to numl
and num?2

public static void main(String[] args) {
int i =05;

int | =2;
int k = max(i, j);
System out. pri nt | n(_
"The maxi num between " +i +
"and " +j +" is " + k); num2: 2 €,
¥ /numI:S(-:--.
|
.)
public static int[max(int nunl, Tnt Ksmcereqmredforthe '
int result: main method) ,
:]

. 1
if (numl > nun®) J:2F-
result = nuni; i:5

el se
result = nun?;
return resul t: The max method is
} invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

Declare result

public static void main(String[] args) {

int i =05;
int | =2;
int k = max(i, j);

Systemout. print| n(
"The maxi mum between " + i1 +

result:
"and " +j +" is " + k); num?2: 2

]
- numl: 516 - -
]
Space required for the | !

:

[}

|

public static int nax(int numl, iInt nun2) {)
[Tt Tesult; | main method)
if (numl > nun®) j:2
result = nuni; i:5
el se
result = nun?;
return resul t: The max method is
} invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

(num1 > num?2) is true

public static void main(String[] args) {

int i =5;

int j =2;

int k = max(i, j);

Systemout. print| n(

"The nmaxi mum between " +i + result:

"and " +j +" is " + k); num2: 2 |
} numl: 5€

Space required for the

puiblnltcrzgaltlt'c Iint max(1nt nunml, int nun®) { main method
’ k:
lif (numl > nun®) | j: 2
result = nuni: i:5
el se
result = nun?;
return resul t: The max method is
} invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

Assign numl to result

public static void main(String[] args) {
int i =05;
int | =2;
int k =nmax(i, j); '
Space required for the
System out. pri ntl n(max method
"The maxi mum between " +1 + result: 5
"and " +j +" is " +k); e
} numl: 5€

public static int max(int nunl, int nun2) { SP/acereqmredforthe
P Tresnl b main method)

J:

1

if (nunl > nun?®) 2
| result = nuni; | 5
el se
result = nun;
return resul t; The max method is
} invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

public static void main(String[] args) {
int i =05;

int | =2;
int k = max(i, j);
System out. pri ntl n(

"The \maxi mrum between " + i +
) "and\" +j +" is " +k);

Return result and assign it to k

Space required for the
max method
result: 5t - -
num?2: 2 |€
numl: 5€

public static int max(int numl, int nun?) {

int res

if (numl \> nun®)
resul t nuni;

el se
resul t nun;

[return resul t;

}

Space required for the
main method

/////////////

The max method 1s
invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

antmation

Trace Call Stack

public static void main(String[] args) {

}

int i =05;
int | =2;
int k = max(i, j);

Systemout. pri ntl n(

"and " +j +" is

"The maxi mum between " + i

=)

+

public static int max(int numl, int nun2) {

int result;

if (numl > nun®)
result = nuni;

el se
resul t

nuny;

return resul t;

Execute print statement

Space required for the
main method
k:5
32
i:5

The main method
1s invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Passing Parameters

public static void nPrintln (String message, int n) {
for (int i = 0; i < n; i++)
System.out.println (message) ;

Suppose you invoke the method using
nPrintln(*“Welcome to Java”, 5);
What is the output?

Suppose you invoke the method using
nPrintln(“Computer Science”, 15); \

What is the output?

Can you invoke the method using
nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Pass by Value

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,slrgc. All
rights reserved.

Activation record for
the main method

num2: 2
numl: 1

Pass by Value, cont.

The values of numl and num2 are
passed to n1 and n2.

Activation record for
the swap method

temp:
n2% .2
[B Bt

Activation record for
the main method

num2: 2
numl: 1

The main method
is invoked.

The swap method
is invoked.

Activation record for
the swap method

temp: 1
n2x 1
nit 2

The values for nl and n2 are
swapped, but it does not affect
numl and num?2.

Activation record for
the main method

num2: 2

numl: 1

Activation record for

the main method Stack is empty

num2: 2
numl: 1

The swap method
is executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

The main method

is finished.

The swap method
is finished.

Overloading Methods
Overloading the max Method

public static double max (double numl, double
num2?) {
if (numl > num2)
return numl;
else
return num?2;

}
TestMethodOverloading - 9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a method, but the
compiler cannot determine the most specific
match. This 1s referred to as ambiguous
invocation. Ambiguous 1nvocation 1s a
compile error. =\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All AP
rights reserved.

Ambiguous Invocation

public class AmbiguousOverloading ({
public static void main(String[] args) {
System.out.println(max (1, 2));

public static double max(int numl, double num2) {
if (numl > num2)
return numl;
else
return num2;

public static double max (double numl, int num2) {
if (numl > num2) \
return numl;
else
return num2;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from 1ts

declaration and continues to the end of the\
block that contains the variable. A local
variable must be declared before 1t can bé

used.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 4?
rights reserved.

Scope of Local Variables, cont.

You can declare a local variable with the
same name multiple times 1n different
non-nesting blocks 1n a method, but you
cannot declare a local variable twice 1n nested

blocks.
N\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 4?
rights reserved.

Scope of Local Variables, cont.

A variable declared in the 1nitial action part of a for loop
header has its scope 1n the entire loop. But a variable
declared inside a for loop body has its scope limited 1n the

loop body from 1ts declaration and to the end of the block
that contains the variable.

public static void methodl () {

— for (= 1; i < 10; i++) {

The scope of 1— . \

The scope of j—P

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Scope of Local Variables, cont.

It is fine to declare i in two
non- nesti ng bl ocks

It is wong to declare i in
two nesting bl ocks

rights reserved.

pU_intc statlic voi d nethodl() { public static void nethod2() {
Nt X = 1;
int y =1; = =1
int sum = 0;
“for (10 =1, i <10; i+ { q
X +=1i; for (=1 i <10; i+b
*’J } ¢ sum +=i ;
N)
for (Ini =1, i <10; i+ {
y 4= 1; -}
}
}
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k

Scope of Local Variables, cont.

// Fine with no errors
public static void correctMethod() {
int x = 1;
int y = 1;
// i is declared
for (int 1 = 1; i1 < 10; i++) {
X += 1;
}
// i1 is declared again
for (int 1 = 1; i < 10; i++) {
y += 1;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Scope of Local Variables, cont.

// With errors
public static void incorrectMethod() ({
int x = 1;
int y = 1;
for (int 1 = 1; 1 < 10; 1i++) {
int x = 0;
X += 1;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Method Abstraction

You can think of the method body as a black box
that contains the detailed implementation for the
method.

Optional arguments Optional return
for Input value

L

| Method Header ‘
<€ Black Box \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Benefits of Methods

* Write a method once and reuse 1t anywhere.

e Information hiding. Hide the implementation
from the user.

* Reduce complexity.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

/

Case Study: Generating Random
Characters

Computer programs process numerical data and characters.
You have seen many examples that involve numerical data.
It 1s also important to understand characters and how to
process them.

As introduced 1n Section 2.9, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 1n
decimal). To generate a random character 1s to generate a
random 1nteger between 0 and 65535 using the following\
expression: (note that since 0 <= Math.random() <'1.0,
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 5?
rights reserved.

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a’
1S
(int)'a’
So, a random 1nteger between (int)'a’ and (int)'z'\
(int)((int)'a’' + Math.random() * ((int)'z' - (1nt)'a’ + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 5,
rights reserved.

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a’
1S
(int)'a’
So, a random 1nteger between (int)'a’ and (int)'z'\
(int)((int)'a’' + Math.random() * ((int)'z' - (1nt)'a’ + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 5?
rights reserved.

Case Study: Generating Random
Characters, cont.

As discussed 1n Chapter 2., all numeric operators
can be applied to the char operands. The char
operand 1s cast into a number 1f the other operand
1s a number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z'-'a' + 1)

™

So a random lowercase letter 1s
(char)('a’ + Math.random() * ('z' - 'a' + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 5?
rights reserved.

Case Study: Generating Random
Characters, cont.

To generalize the foregoing discussion, a random character
between any two characters chl and ch2 with chl < ch2
can be generated as follows:

(char)(chl + Math.random() * (ch2 — chl + 1))

S\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

The RandomCharacter Class

// RandomCharacter.java: Generate random characters
public class RandomCharacter {
/** Generate a random character between chl and ch2 */
public static char getRandomCharacter (char chl, char ch2) {
return (char) (chl + Math.random() * (ch2 - chl + 1)) ;

/** Generate a random lowercase letter */
public static char getRandomlLowerCaseLetter () ({
return getRandomCharacter('a', 'z');

/** Generate a random uppercase letter */
public static char getRandomUpperCaseletter () {
return getRandomCharacter('A', 'Z');

/** Generate a random digit character */
public static char getRandomDigitCharacter () ({

return getRandomCharacter('0', '9'); RandomCharacter \

TestRandomCharacter

/** Generate a random character */
public static char getRandomCharacter () {

return getRandomCharacter ('\u0000', '\uFFFF'); -
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Stepwise Refinement (Optional)

The concept of method abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose 1t into subproblems. The
subproblems can be further decomposed 1nto
smaller, more manageable problems. \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All 5?
rights reserved.

Your Turn!

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,é%c. All
rights reserved.

1Clicker Quiz

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,é@c. All
rights reserved.

Misc. Slides

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education,éw. All
rights reserved.

PrintCalender Case Study

<~ Command Prompt]

C:\book>java PrintCalendar

April 2009
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

C:\book>_
<] |

=10 x|

Enter full year (e.g., 2001): 2009
Enter month in number between 1 and 12: 4

H
=

PrintCalendar -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

)

Design Diagram

printCalendar
(main)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

\7 Y

readInput printMonth

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

Y

readInput

Y

printMonth

Y

printMonthTitle

Y

printMonthBody

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

Y

readInput

Y

printMonth

Y

printMonthTitle

Y

getMonthName

Y

printMonthBody

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

\7 Y

readInput printMonth
Y Y
printMonthTitle printMonthBody
Y Y
getMonthName getStartDay

Y

getNﬁm OfDaysInMonth

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

\7 Y

readInput printMonth

Y Y
printMonthTitle printMonthBody

Y Y
getMonthName getStartDay

Y
getTotalNumOfDays
1

YVY

getNumOfDaysInMonth

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Design Diagram

printCalendar
(main)

\7 Y

readInput printMonth

Y Y
printMonthTitle printMonthBody

Y Y
getMonthName getStartDay

Y
getTotalNumOfDays
1

YVY

getNumOfDaysInMonth
|

Y VY

isLeapYear

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Implementation: Top-Down

Top-down approach 1s to implement one method 1n the
structure chart at a time from the top to the bottom. Stubs
can be used for the methods waiting to be implemented. A
stub 1s a sitmple but incomplete version of a method. The
use of stubs enables you to test invoking the method from

a caller. Implement the main method first and t!

stub for the printMonth method. For example, |

1C11 USC a4

et

printMonth display the year and the month 1n t|
Thus, your program may begin like this:

ne stub.

A Skeleton for printCalendar

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Implementation: Bottom-Up

Bottom-up approach 1s to implement one method 1n the
structure chart at a time from the bottom to the top. For
cach method implemented, write a test program to test it.
Both top-down and bottom-up methods are fine. Both
approaches implement the methods incrementally and
help to 1solate programming errors and makes debugging
casy. Sometimes, they can be used together.

D\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All .R
rights reserved.

Benefits of Stepwise Refinement

Simpler Program
Reusing Methods
Easier Developing, Debugging, and Testing

Better Facilitating Teamwork \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Calling Methods

Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax - B

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

vold Method Example

This type of method does not return a value. The method
performs some actions.

TestVoidMethod -
TestReturnGradeMethod - \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Pass by Value

This program demonstrates passing values
to the methods.

Increment -

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Pass by Value

Testing Pass by value

This program demonstrates passing values
to the methods.

TestPassByValue -

™

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Modularizing Code

Methods can be used to reduce redundant coding
and enable code reuse. Methods can also be used to
modularize code and improve the quality of the
program.

GreatestCommonDivisorMethod -

PrimeNumberMethod -

\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Case Study: Converting Hexadecimals
to Decimals

Write a method that converts a hexadecimal
number into a decimal number.

ABCD =>
A*16"3 + B*1672 + C*1671+ D*1670
=((A*16 + B)*16 + C)*16+D

= ((10¥16 + 11)*16 + 12)*16+13 = ? ;
77

Hex2Dec -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Reuse Methods from Other Classes

NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the max method
using ClassName.methodName (e.g., TestMax.max).

A\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

