
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 9
Searching and Sorting

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Kris Brown

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Searching Arrays
Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Linear Search
The linear search approach compares the key
element, key, sequentially with each element in
the array list. The method continues to do so
until the key matches an element in the list or
the list is exhausted without a match being
found. If a match is made, the linear search
returns the index of the element in the array
that matches the key. If no match is found, the
search returns -1.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 5

http://www.cs.armstrong.edu/liang/animation/web/Linear
Search.html

Linear Search Animation
animation

http://www.cs.armstrong.edu/liang/animation/web/LinearSearch.html
http://www.cs.armstrong.edu/liang/animation/web/LinearSearch.html
http://www.cs.armstrong.edu/liang/animation/web/LinearSearch.html
http://www.cs.armstrong.edu/liang/animation/web/LinearSearch.html
http://www.cs.armstrong.edu/liang/animation/web/LinearSearch.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

From Idea to Solution
/** The method for finding a key in the list */
public static int linearSearch(int[] list, int key) {
 for (int i = 0; i < list.length; i++)
 if (key == list[i])
 return i;
 return -1;
}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
int i = linearSearch(list, 4); // returns 1
int j = linearSearch(list, -4); // returns -1
int k = linearSearch(list, -3); // returns 5

Trace the method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

Binary Search
For binary search to work, the elements in the
array must already be ordered. Without loss of
generality, assume that the array is in
ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79
The binary search first compares the key with
the element in the middle of the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

Binary Search, cont.

● If the key is less than the middle element,
you only need to search the key in the first
half of the array.

● If the key is equal to the middle element,
the search ends with a match.

● If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

http://www.cs.armstrong.edu/liang/animation/web/Binary
Search.html

Binary Search Animation
animation

http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html
http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html
http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html
http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html
http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 11

Binary Search, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 12

Binary Search, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 13

Binary Search, cont.
The binarySearch method returns the index of the
element in the list that matches the search key if it
is contained in the list. Otherwise, it returns

 -insertion point - 1.

The insertion point is the point at which the key
would be inserted into the list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 14

Sorting Arrays
Sorting, like searching, is also a common task in
computer programming. Many different algorithms
have been developed for sorting. This section
introduces a simple, intuitive sorting algorithms:
selection sort.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 15

Why study sorting?
Sorting is a classic subject in computer science. There are three
reasons for studying sorting algorithms.

– First, sorting algorithms illustrate many creative
approaches to problem solving and these approaches can
be applied to solve other problems.

– Second, sorting algorithms are good for practicing
fundamental programming techniques using selection
statements, loops, methods, and arrays.

– Third, sorting algorithms are excellent examples to
demonstrate algorithm performance.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 16

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 17

http://www.cs.armstrong.edu/liang/animation/web/Selecti
onSort.html

Selection Sort Animation
animation

http://www.cs.armstrong.edu/liang/animation/web/SelectionSort.html
http://www.cs.armstrong.edu/liang/animation/web/SelectionSort.html
http://www.cs.armstrong.edu/liang/animation/web/SelectionSort.html
http://www.cs.armstrong.edu/liang/animation/web/SelectionSort.html
http://www.cs.armstrong.edu/liang/animation/web/SelectionSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 18

From Idea to Solution
for (int i = 0; i < list.length; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i+1..listSize-1]
}

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

 ...

list[0] list[1] list[2] list[3] ... list[10]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 19

Expand

for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

 double currentMin = list[i];
 int currentMinIndex = i;
 for (int j = i+1; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 currentMinIndex = j;
 }
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 20

Expand

for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

 double currentMin = list[i];
 int currentMinIndex = i;
 for (int j = i; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 currentMinIndex = j;
 }
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 21

Expand

for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

 if (currentMinIndex != i) {
 list[currentMinIndex] = list[i];
 list[i] = currentMin;
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 22

Wrap it in a Method
 /** The method for sorting the numbers */

 public static void selectionSort(double[] list) {
 for (int i = 0; i < list.length; i++) {
 // Find the minimum in the list[i..list.length-1]
 double currentMin = list[i];
 int currentMinIndex = i;
 for (int j = i + 1; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 currentMinIndex = j;
 }
 }

 // Swap list[i] with list[currentMinIndex] if necessary;
 if (currentMinIndex != i) {
 list[currentMinIndex] = list[i];
 list[i] = currentMin;
 }
 }
 }

Invoke it

selectionSort(yourList)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 23

Insertion Sort
int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 24

http://www.cs.armstrong.edu/liang/animation/web/Insertio
nSort.html

Insertion Sort Animation
animation

http://www.cs.armstrong.edu/liang/animation/web/InsertionSort.html
http://www.cs.armstrong.edu/liang/animation/web/InsertionSort.html
http://www.cs.armstrong.edu/liang/animation/web/InsertionSort.html
http://www.cs.armstrong.edu/liang/animation/web/InsertionSort.html
http://www.cs.armstrong.edu/liang/animation/web/InsertionSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 25

Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6
1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 26

How to Insert?

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 27

From Idea to Solution
for (int i = 1; i < list.length; i++) {
 insert list[i] into a sorted sublist list[0..i-1] so that
 list[0..i] is sorted
}

list[0]

list[0] list[1]

list[0] list[1] list[2]

list[0] list[1] list[2] list[3]

list[0] list[1] list[2] list[3] ...

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 28

From Idea to Solution
for (int i = 1; i < list.length; i++) {
 insert list[i] into a sorted sublist list[0..i-1] so that
 list[0..i] is sorted
}

Expand

 double currentElement = list[i];
 int k;
 for (k = i - 1; k >= 0 && list[k] > currentElement; k--) {
 list[k + 1] = list[k];
 }
 // Insert the current element into list[k + 1]
 list[k + 1] = currentElement;

RunInsertSort

http://html/InsertSort.bat
http://www.cs.armstrong.edu/liang/intro11e/html/InsertSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 29

Bubble Sort

Bubble sort time: O(n2)

RunBubbleSort

http://html/BubbleSort.bat
http://www.cs.armstrong.edu/liang/intro11e/html/BubbleSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 30

Bubble Sort Animation
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html

http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Computational Complexity
(Big O)

● T(n)=O(1) // constant time
● T(n)=O(log n) // logarithmic
● T(n)=O(n) // linear
● T(n)=O(nlog n) // linearithmic
● T(n)=O(n2) // quadratic
● T(n)=O(n3) // cubic

31

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Complexity Examples

32

http://bigocheatsheet.com/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Complexity Examples

33

http://bigocheatsheet.com/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Why does it matter?

34

Algorithm 10 20 50 100 1,000 10,000 100,000
O(1) <1 s <1 s <1 s <1 s <1 s <1 s <1 s

O(log(n)) <1 s <1 s <1 s <1 s <1 s <1 s <1 s
O(n) <1 s <1 s <1 s <1 s <1 s <1 s <1 s

O(n*log(n)) <1 s <1 s <1 s <1 s <1 s <1 s <1 s
O(n2) <1 s <1 s <1 s <1 s <1 s 2 s 3 m
O(n3) <1 s <1 s <1 s <1 s 20 s 6 h 232 d
O(2n) <1 s <1 s 260 d ∞ ∞ ∞ ∞
O(n!) <1 s ∞ ∞ ∞ ∞ ∞ ∞
O(nn) 3 m ∞ ∞ ∞ ∞ ∞ ∞

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Misc Slides

35

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 36

Objectives
● To study and analyze time complexity of various sorting

algorithms (§§23.2–23.7).
● To design, implement, and analyze insertion sort (§23.2).
● To design, implement, and analyze bubble sort (§23.3).
● To design, implement, and analyze merge sort (§23.4).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 37

What data to sort?
The data to be sorted might be integers, doubles, characters, or
objects. §7.8, “Sorting Arrays,” presented selection sort and
insertion sort for numeric values. The selection sort algorithm
was extended to sort an array of objects in §11.5.7, “Example:
Sorting an Array of Objects.” The Java API contains several
overloaded sort methods for sorting primitive type values and
objects in the java.util.Arrays and java.util.Collections class. For
simplicity, this section assumes:

● data to be sorted are integers,
● data are sorted in ascending order, and
● data are stored in an array. The programs can be easily

modified to sort other types of data, to sort in descending
order, or to sort data in an ArrayList or a LinkedList.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Don’t need to know Merge Sort
for now

38

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 39

Merge Sort

RunMergeSort

http://html/MergeSort.bat
http://www.cs.armstrong.edu/liang/intro11e/html/MergeSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 40

Merge Sort
mergeSort(list):
 firstHalf = mergeSort(firstHalf);
 secondHalf = mergeSort(secondHalf);
 list = merge(firstHalf, secondHalf);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 41

Merge Two Sorted Lists

Animation for Merging Two Sorted Lists

http://cs.armstrong.edu/liang/animation/web/MergeList.html
http://cs.armstrong.edu/liang/animation/web/MergeList.html
http://cs.armstrong.edu/liang/animation/web/MergeList.html
http://cs.armstrong.edu/liang/animation/web/MergeList.html
http://cs.armstrong.edu/liang/animation/web/MergeList.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 42

Merge Sort Time
Let T(n) denote the time required for sorting an
array of n elements using merge sort. Without loss
of generality, assume n is a power of 2. The merge
sort algorithm splits the array into two subarrays,
sorts the subarrays using the same algorithm
recursively, and then merges the subarrays. So,

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 43

Merge Sort Time
The first T(n/2) is the time for sorting the first
half of the array and the second T(n/2) is the time
for sorting the second half. To merge two
subarrays, it takes at most n-1 comparisons to
compare the elements from the two subarrays and
n moves to move elements to the temporary array.
So, the total time is 2n-1. Therefore,

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 44

Quick Sort
Quick sort, developed by C. A. R. Hoare (1962),
works as follows: The algorithm selects an element,
called the pivot, in the array. Divide the array into
two parts such that all the elements in the first part
are less than or equal to the pivot and all the
elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 45

Quick Sort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 46

Partition
Animation for

partition

RunQuickSort

http://cs.armstrong.edu/liang/animation/web/QuickSortPartition.html
http://cs.armstrong.edu/liang/animation/web/QuickSortPartition.html
http://cs.armstrong.edu/liang/animation/web/QuickSortPartition.html
http://cs.armstrong.edu/liang/animation/web/QuickSortPartition.html
http://cs.armstrong.edu/liang/animation/web/QuickSortPartition.html
http://html/QuickSort.bat
http://www.cs.armstrong.edu/liang/intro11e/html/QuickSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 47

Quick Sort Time
To partition an array of n elements, it takes n-1
comparisons and n moves in the worst case. So,
the time required for partition is O(n).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 48

Worst-Case Time
In the worst case, each time the pivot divides the
array into one big subarray with the other empty.
The size of the big subarray is one less than the
one before divided. The algorithm requires
time:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 49

Best-Case Time
In the best case, each time the pivot divides the
array into two parts of about the same size. Let
T(n) denote the time required for sorting an array
of elements using quick sort. So,

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 50

Average-Case Time
On the average, each time the pivot will not
divide the array into two parts of the same size
nor one empty part. Statistically, the sizes of the
two parts are very close. So the average time is
O(nlogn). The exact average-case analysis is
beyond the scope of this book.

