
11/3/16

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

1

Chapter 18 Recursion

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

2

Motivations
Suppose you want to find all the files under a
directory that contains a particular word. How do
you solve this problem? There are several ways to
solve this problem. An intuitive solution is to use
recursion by searching the files in the
subdirectories recursively.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

3

Motivations
H-trees, depicted in Figure 18.1, are used in a very large-
scale integration (VLSI) design as a clock distribution
network for routing timing signals to all parts of a chip
with equal propagation delays. How do you write a
program to display H-trees? A good approach is to use
recursion.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

4

Objectives
q To describe what a recursive method is and the benefits of using recursion

(§18.1).
q To develop recursive methods for recursive mathematical functions (§§18.2–

18.3).
q To explain how recursive method calls are handled in a call stack (§§18.2–18.3).
q To solve problems using recursion (§18.4).
q To use an overloaded helper method to derive a recursive method (§18.5).

q To implement a selection sort using recursion (§18.5.1).
q To implement a binary search using recursion (§18.5.2).
q To get the directory size using recursion (§18.6).
q To solve the Tower of Hanoi problem using recursion (§18.7).
q To draw fractals using recursion (§18.8).

q To discover the relationship and difference between recursion and iteration
(§18.9).

q To know tail-recursive methods and why they are desirable (§18.10).

11/3/16

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5

Computing Factorial
factorial(0) = 1;
factorial(n) = n*factorial(n-1);

n! = n * (n-1)!
0! = 1

RunComputeFactorial

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

6

Computing Factorial

factorial(4)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7

Computing Factorial

factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

8

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

11/3/16

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

9

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

10

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

11

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

12

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

11/3/16

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

13

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)
= 4 * 3 * 2

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

14

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

15

Computing Factorial

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)
= 24

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

16

Trace Recursive factorial
animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

11/3/16

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

17

Trace Recursive factorial
animation

Executes factorial(3)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

18

Trace Recursive factorial
animation

Executes factorial(2)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

19

Trace Recursive factorial
animation

Executes factorial(1)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

20

Trace Recursive factorial
animation

Executes factorial(0)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

11/3/16

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

21

Trace Recursive factorial
animation

returns 1

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

22

Trace Recursive factorial
animation

returns factorial(0)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

23

Trace Recursive factorial
animation

returns factorial(1)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

24

Trace Recursive factorial
animation

returns factorial(2)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

11/3/16

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

25

Trace Recursive factorial
animation

returns factorial(3)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

26

Trace Recursive factorial
animation

returns factorial(4)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

27

factorial(4) Stack Trace

Space Required
for factorial(4)

1 Space Required
for factorial(4)

2 Space Required
for factorial(3)

Space Required
for factorial(4)

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Space Required
for factorial(4)

6

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

7

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

8 Space Required
for factorial(3)

Space Required
for factorial(4)

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

28

Other Examples
f(0) = 0;

f(n) = n + f(n-1);

11/3/16

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

29

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

RunComputeFibonacci

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

30

Fibonnaci Numbers, cont.

return fib(3) + fib(2)

return fib(2) + fib(1)

return fib(1) + fib(0)

return 1

return fib(1) + fib(0)

return 0

return 1

return 1 return 0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0)

6: return fib(0)

8: call fib(1)

9: return fib(1)

10: return fib(3)
11: call fib(2)

16: return fib(2)

12: call fib(1) 13: return fib(1)
14: return fib(0)

15: return fib(0)

fib(4)
0: call fib(4) 17: return fib(4)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

31

Characteristics of Recursion
All recursive methods have the following characteristics:

– One or more base cases (the simplest case) are used to stop
recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it
into subproblems. If a subproblem resembles the original
problem, you can apply the same approach to solve the
subproblem recursively. This subproblem is almost the
same as the original problem in nature with a smaller size.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

32

Problem Solving Using Recursion
Let us consider a simple problem of printing a message for
n times. You can break the problem into two subproblems:
one is to print the message one time and the other is to print
the message for n-1 times. The second problem is the same
as the original problem with a smaller size. The base case
for the problem is n==0. You can solve this problem using
recursion as follows:
nPrintln(“Welcome”, 5);

public static void nPrintln(String message, int times) {
if (times >= 1) {
System.out.println(message);
nPrintln(message, times - 1);

} // The base case is times == 0
}

11/3/16

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

33

Think Recursively
Many of the problems presented in the early chapters can
be solved using recursion if you think recursively. For
example, the palindrome problem can be solved recursively
as follows:

public static boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;

else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
return false;

else
return isPalindrome(s.substring(1, s.length() - 1));

}
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
34

Recursive Helper Methods
The preceding recursive isPalindrome method is not
efficient, because it creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) {
return isPalindrome(s, 0, s.length() - 1);

}
public static boolean isPalindrome(String s, int low, int high) {

if (high <= low) // Base case
return true;

else if (s.charAt(low) != s.charAt(high)) // Base case

return false;
else

return isPalindrome(s, low + 1, high - 1);
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

35

Recursive Selection Sort
1. Find the smallest number in the list and swaps it

with the first number.
2. Ignore the first number and sort the remaining

smaller list recursively.

RecursiveSelectionSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

36

Recursive Binary Search
1. Case 1: If the key is less than the middle element,

recursively search the key in the first half of the array.
2. Case 2: If the key is equal to the middle element, the

search ends with a match.
3. Case 3: If the key is greater than the middle element,

recursively search the key in the second half of the
array.

RecursiveBinarySearch

11/3/16

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

37

Recursive Implementation
/** Use binary search to find the key in the list */
public static int recursiveBinarySearch(int[] list, int key) {
int low = 0;
int high = list.length - 1;
return recursiveBinarySearch(list, key, low, high);

}

/** Use binary search to find the key in the list between
list[low] list[high] */

public static int recursiveBinarySearch(int[] list, int key,
int low, int high) {
if (low > high) // The list has been exhausted without a match
return -low - 1;

int mid = (low + high) / 2;
if (key < list[mid])
return recursiveBinarySearch(list, key, low, mid - 1);

else if (key == list[mid])
return mid;

else
return recursiveBinarySearch(list, key, mid + 1, high);

}
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
38

Directory Size
The preceding examples can easily be solved without using

recursion. This section presents a problem that is
difficult to solve without using recursion. The problem is
to find the size of a directory. The size of a directory is
the sum of the sizes of all files in the directory. A
directory may contain subdirectories. Suppose a
directory contains files , , ..., , and subdirectories , , ..., ,
as shown below.

directory

...

1f
1

2f
1

mf
1

1d
1

2d
1

nd
1

...

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

39

Directory Size
The size of the directory can be defined recursively as

follows:

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

RunDirectorySize

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

40

Tower of Hanoi

§ There are n disks labeled 1, 2, 3, . . ., n, and three
towers labeled A, B, and C.

§ No disk can be on top of a smaller disk at any
time.

§ All the disks are initially placed on tower A.
§ Only one disk can be moved at a time, and it must

be the top disk on the tower.

11/3/16

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

41

Tower of Hanoi, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

42

Solution to Tower of Hanoi
The Tower of Hanoi problem can be decomposed into three
subproblems.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

43

Solution to Tower of Hanoi

q Move the first n - 1 disks from A to C with the assistance of tower
B.

q Move disk n from A to B.
q Move n - 1 disks from C to B with the assistance of tower A.

RunTowerOfHanoi

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

44

Exercise 18.3 GCD
gcd(2, 3) = 1
gcd(2, 10) = 2
gcd(25, 35) = 5
gcd(205, 301) = 5
gcd(m, n)
Approach 1: Brute-force, start from min(n, m) down to 1,

to check if a number is common divisor for both m and
n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm
Approach 3: Recursive method

11/3/16

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

45

Approach 2: Euclid’s algorithm
// Get absolute value of m and n;
t1 = Math.abs(m); t2 = Math.abs(n);
// r is the remainder of t1 divided by t2;
r = t1 % t2;
while (r != 0) {
t1 = t2;
t2 = r;
r = t1 % t2;

}

// When r is 0, t2 is the greatest common
// divisor between t1 and t2
return t2;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

46

Approach 3: Recursive Method
gcd(m, n) = n if m % n = 0;
gcd(m, n) = gcd(n, m % n); otherwise;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

47

Fractals?
A fractal is a geometrical figure just like
triangles, circles, and rectangles, but fractals
can be divided into parts, each of which is a
reduced-size copy of the whole. There are
many interesting examples of fractals. This
section introduces a simple fractal, called
Sierpinski triangle, named after a famous
Polish mathematician.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

48

Sierpinski Triangle
1. It begins with an equilateral triangle, which is considered to be

the Sierpinski fractal of order (or level) 0, as shown in Figure
(a).

2. Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown in Figure (b).

3. Leave the center triangle intact. Connect the midpoints of the
sides of the three other triangles to create a Sierpinski of order
2, as shown in Figure (c).

4. You can repeat the same process recursively to create a
Sierpinski triangle of order 3, 4, ..., and so on, as shown in
Figure (d).

11/3/16

13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

49

Sierpinski Triangle Solution

RunSierpinskiTriangle

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

50

Recursion vs. Iteration
Recursion is an alternative form of program
control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the
program calls a method, the system must assign
space for all of the method’s local variables and
parameters. This can consume considerable
memory and requires extra time to manage the
additional space.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

51

Advantages of Using Recursion

Recursion is good for solving the problems that are
inherently recursive.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

52

Tail Recursion

A recursive method is said to be tail recursive if
there are no pending operations to be performed on
return from a recursive call.

Non-tail recursive

Tail recursive

ComputeFactorial

ComputeFactorialTailRecursion

