
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

1

Chapter 23 Sorting

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

2

Objectives
✦ To study and analyze time complexity of various sorting

algorithms (§§23.2–23.7).
✦ To design, implement, and analyze insertion sort (§23.2).
✦ To design, implement, and analyze bubble sort (§23.3).
✦ To design, implement, and analyze merge sort (§23.4).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

3

Why study sorting?
Sorting is a classic subject in computer science. There are three
reasons for studying sorting algorithms.

– First, sorting algorithms illustrate many creative
approaches to problem solving and these approaches can
be applied to solve other problems.

– Second, sorting algorithms are good for practicing
fundamental programming techniques using selection
statements, loops, methods, and arrays.

– Third, sorting algorithms are excellent examples to
demonstrate algorithm performance.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

4

What data to sort?
The data to be sorted might be integers, doubles, characters, or
objects. §7.8, “Sorting Arrays,” presented selection sort and
insertion sort for numeric values. The selection sort algorithm
was extended to sort an array of objects in §11.5.7, “Example:
Sorting an Array of Objects.” The Java API contains several
overloaded sort methods for sorting primitive type values and
objects in the java.util.Arrays and java.util.Collections class. For
simplicity, this section assumes:

✦ data to be sorted are integers,
✦ data are sorted in ascending order, and
✦ data are stored in an array. The programs can be easily

modified to sort other types of data, to sort in descending
order, or to sort data in an ArrayList or a LinkedList.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5

Insertion Sort
int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

2 9 5 4 8 1 6

Step 1: Initially, the sorted sublist contains the
first element in the list . Insert 9 into the sublist .

2 9 5 4 8 1 6

Step2: The sorted sublist is {2, 9}. Insert 5 into
the sublist.

2 5 9 4 8 1 6

Step 3: The sorted sublist is {2, 5, 9}. Insert 4
into the sublist.

2 4 5 9 8 1 6

Step 4: The sorted sublist is {2, 4, 5, 9}. In sert 8
into the sublist.

2 4 5 8 9 1 6

Step 5: The sorted sublist is {2, 4, 5, 8, 9}. In sert
1 into the sublist.

1 2 4 5 8 9 6

Step 6: The sorted sublist is {1, 2, 4, 5, 8, 9}.
Insert 6 into the sublist.

1 2 4 5 6 8 9

Step 7: The entire list is now sorted.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

6

http://www.cs.armstrong.edu/liang/animation/web/Insertio
nSort.html

Insertion Sort Animation
animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

7

Insertion Sort

2 9 5 4 8 1 6
2 9 5 4 8 1 6

2 5 9 4 8 1 6

2 4 5 8 9 1 6
1 2 4 5 8 9 6

2 4 5 9 8 1 6

1 2 4 5 6 8 9

int[] myList = {2, 9, 5, 4, 8, 1, 6}; // Unsorted

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

8

How to Insert?

The insertion sort
algorithm sorts a list
of values by
repeatedly inserting
an unsorted element
into a sorted sublist
until the whole list
is sorted.

 [0] [1] [2] [3] [4] [5] [6]
 2 5 9 4 list Step 1: Save 4 to a temporary variable currentElement

 [0] [1] [2] [3] [4] [5] [6]
 2 5 9 list Step 2: Move list[2] to list[3]

 [0] [1] [2] [3] [4] [5] [6]

 2 5 9 list Step 3: Move list[1] to list[2]

 [0] [1] [2] [3] [4] [5] [6]

 2 4 5 9 list Step 4: Assign currentElement to list[1]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

9

From Idea to Solution
for (int i = 1; i < list.length; i++) {

insert list[i] into a sorted sublist list[0..i-1] so that

list[0..i] is sorted
}

list[0]

list[0] list[1]

list[0] list[1] list[2]

list[0] list[1] list[2] list[3]

list[0] list[1] list[2] list[3] ...

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

10

From Idea to Solution
for (int i = 1; i < list.length; i++) {

insert list[i] into a sorted sublist list[0..i-1] so that

list[0..i] is sorted
}

Expand
double currentElement = list[i];
int k;
for (k = i - 1; k >= 0 && list[k] > currentElement; k--) {

list[k + 1] = list[k];
}
// Insert the current element into list[k + 1]
list[k + 1] = currentElement;

RunInsertSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

11

Bubble Sort

 2 5 9 4 8 1
 2 5 4 9 8 1
 2 5 4 8 9 1
 2 5 4 8 1 9

(a) 1st pass

2 4 5 8 1 9
 2 4 5 8 1 9
 2 4 5 1 8 9

(b) 2nd pass

2 4 5 1 8 9
 2 4 1 5 8 9

(c) 3rd pass

2 1 4 5 8 9

(d) 4th pass

 2 9 5 4 8 1

(e) 5th pass

 2 5 4 8 1 9

 2 4 5 1 8 9

 2 4 1 5 8 9

 1 2 4 5 8 9

22
12...)2()1(

2 nnnn =++++

Bubble sort time: O(n2)

RunBubbleSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

12

Bubble Sort Animation
http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

13

Merge Sort

 2 9 5 4 8 1 6 7

 2 9 5 4 8 1 6 7

split

 2 9
split

 5 4

 2
split

 9 5 4

 8 1 6 7

 8 1 6 7

 2 9

merge

 4 5 1 8 6 7

 2 4 5 9 1 6 7 8

 1 2 4 5 6 7 8 9

merge

merge

divide

conquer

RunMergeSort
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.
14

Merge Sort
mergeSort(list):

firstHalf = mergeSort(firstHalf);
secondHalf = mergeSort(secondHalf);
list = merge(firstHalf, secondHalf);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

15

Merge Two Sorted Lists

 2 4 5 9

 current1

 1

 1 6 7 8

 current2

 current3

 (a) After moving 1 to temp (b) After moving all the
elements in list2 to temp

 to temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8 9

 1 6 7 8

 current2

 current3

 (c) After moving 9 to
temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8

 1 6 7 8

 current2

 current3

Animation for Merging Two Sorted Lists

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

16

Merge Sort Time
Let T(n) denote the time required for sorting an
array of n elements using merge sort. Without loss
of generality, assume n is a power of 2. The merge
sort algorithm splits the array into two subarrays,
sorts the subarrays using the same algorithm
recursively, and then merges the subarrays. So,

mergetimenTnTnT ++=)
2
()

2
()(

)()
2
()

2
()(nOnTnTnT ++=

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

17

Merge Sort Time
The first T(n/2) is the time for sorting the first
half of the array and the second T(n/2) is the time
for sorting the second half. To merge two
subarrays, it takes at most n-1 comparisons to
compare the elements from the two subarrays and
n moves to move elements to the temporary array.
So, the total time is 2n-1. Therefore,

)log(1log212log2

1222...22)
2
(2

1222...22)
2
(2

1222)
2
(212)1

2
2)

4
(2(212)

2
(2)(

log

1log
log

log

1

2
2

nnOnnnnn

nnnnT

nnnnT

nnnTnnnTnnTnT

n

n
n

n

k
k

k

=+=++=

++++=

++++=

++=++=+=

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

18

Quick Sort
Quick sort, developed by C. A. R. Hoare (1962),
works as follows: The algorithm selects an element,
called the pivot, in the array. Divide the array into
two parts such that all the elements in the first part
are less than or equal to the pivot and all the
elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

19

Quick Sort

 5 2 9 3 8 4 0 1 6 7

pivot

(a) The original array

 4 2 1 3 0 5 8 9 6 7

pivot

(b)The original array is partitioned

 0 2 1 3 4 (c) The partial array (4 2 1 3 0) is
partitioned

 0 2 1 3 (d) The partial array (0 2 1 3) is
partitioned

 1 2 3

pivot

pivot

pivot

(e) The partial array (2 1 3) is
partitioned

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

20

Partition

 5 2 9 3 8 4 0 1 6 7

pivot low high

(a) Initialize pivot, low, and high

 5 2 9 3 8 4 0 1 6 7

pivot low high

(b) Search forward and backward

 5 2 1 3 8 4 0 9 6 7

pivot low high

(c) 9 is swapped with 1

 5 2 1 3 8 4 0 9 6 7

pivot low high

(d) Continue search

 5 2 1 3 0 4 8 9 6 7

pivot low high

(e) 8 is swapped with 0

 5 2 1 3 0 4 8 9 6 7

pivot low high

(f) when high < low, search is over

 4 2 1 3 0 5 8 9 6 7

pivot

(g) pivot is in the right place

The index of the pivot is returned

Animation for
partition

RunQuickSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

21

Quick Sort Time
To partition an array of n elements, it takes n-1
comparisons and n moves in the worst case. So,
the time required for partition is O(n).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

22

Worst-Case Time
In the worst case, each time the pivot divides the
array into one big subarray with the other empty.
The size of the big subarray is one less than the
one before divided. The algorithm requires
time:

)(12...)2()1(2nOnn =++++

)(2nO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

23

Best-Case Time
In the best case, each time the pivot divides the
array into two parts of about the same size. Let
T(n) denote the time required for sorting an array
of elements using quick sort. So,

)log()
2
()

2
()(nnOnnTnTnT =++=

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

24

Average-Case Time
On the average, each time the pivot will not
divide the array into two parts of the same size
nor one empty part. Statistically, the sizes of the
two parts are very close. So the average time is
O(nlogn). The exact average-case analysis is
beyond the scope of this book.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Computational Complexity
(Big O)

✦ T(n)=O(1) // constant time
✦ T(n)=O(log n) // logarithmic
✦ T(n)=O(n) // linear
✦ T(n)=O(nlog n) // linearithmic
✦ T(n)=O(n2) // quadratic
✦ T(n)=O(n3) // cubic

25 Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Complexity Examples

26

http://bigocheatsheet.com/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Complexity Examples

27

http://bigocheatsheet.com/
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

Why does it matter?

28

Algorithm 10 20 50 100 1,000 10,000 100,000
O(1) <1 s <1 s <1 s <1 s <1 s <1 s <1 s

O(log(n)) <1 s <1 s <1 s <1 s <1 s <1 s <1 s
O(n) <1 s <1 s <1 s <1 s <1 s <1 s <1 s

O(n*log(n)) <1 s <1 s <1 s <1 s <1 s <1 s <1 s
O(n2) <1 s <1 s <1 s <1 s <1 s 2 s 3 m
O(n3) <1 s <1 s <1 s <1 s 20 s 6 h 232 d
O(2n) <1 s <1 s 260 d ∞ ∞ ∞ ∞
O(n!) <1 s ∞ ∞ ∞ ∞ ∞ ∞
O(nn) 3 m ∞ ∞ ∞ ∞ ∞ ∞

