Chapter 23 Sorting

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All -
rights reserved.

Objectives

+ To study and analyze time complexity of various sorting
algorithms (§§23.2-23.7).

+ To design, implement, and analyze insertion sort (§23.2).

+ To design, implement, and analyze bubble sort (§23.3).

+ To design, implement, and analyze merge sort (§23.4).

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. Al >
rights reserved,

Why study sorting?

Sorting is a classic subject in computer science. There are three
reasons for studying sorting algorithms.

— First, sorting algorithms illustrate many creative
approaches to problem solving and these approaches can
be applied to solve other problems.

— Second, sorting algorithms are good for practicing
fundamental programming techniques using selection
statements, loops, methods, and arrays.

— Third, sorting algorithms are excellent examples to
demonstrate algorithm performance.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All >
ights reserved.

What data to sort?

The data to be sorted might be integers, doubles, characters, or
objects. §7.8, “Sorting Arrays,” presented selection sort and
insertion sort for numeric values. The selection sort algorithm
was extended to sort an array of objects in §11.5.7, “Example:
Sorting an Array of Objects.” The Java API contains several
overloaded sort methods for sorting primitive type values and
objects in the java.util. Arrays and java.util.Collections class. For
simplicity, this section assumes:

data to be sorted are integers, \
data are sorted in ascending order, and

data are stored in an array. The programs can be easily
modified to sort other types of data, to sort in descending
order, or to sort data in an ArrayList or a LinkedList.

+ 4+ 4+

Liang, Introducton to Java Programming, Tenth Editon, (c) 2013 Pearson Education, Inc. All >
rights reserved.

Insertion Sort
int[] myList={2,9, 5,4, 8, 1, 6}; / Unsorted

The insertion sort ¥

. . Step I: Initially, the sorted sublist contains the 2 9 s 4 8 1 6
algorithm sorts a list iy ctement i the fist. Insert ito the subist.
of values by Rl
repeatedly inserting Step2: The sorted sublist is {2, 9}. Insert 5 into D =5 4 8 1 6
an unsorted element "V
mtq a sorted SUbllst Step 3: The sorted sublist is {2, 5, 9}. Insert 4 2 SePomPi 8 1 6
until the whole list into the sublist.
is sorted. ¥

Step 4: The sorted sublistis {2,4, 5, 9}. Insert 8 2 4 5 G § 1 6

into the sublist.

Step 5: The sorted sublist is {2, 4, 5, 8, 9}. Insert Iz-w-} SeP PP 1 6

Step 6: The sorted sublistis {1,2.4, 5,8, 9}. L2 4 5 sedomds
Insert 6 intothe sublist

Step 7: The entire list is now sorted. 12 4 5 6 8 9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All >
rights reserved.

1 into the sublist. A

[animation |

Insertion Sort Animation

http://www.cs.armstrong.edu/liang/animation/web/Insertio
nSort.html B

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All >
rights reserved.

animation I
Insertion Sort

int[] myList= {2,9,5,4,8, 1, 6};// Unsorted

514 [8 [1]6 |
2To B4 Is 1 [e |

Pl]
ERENERCN: N
155 1o e]

A\
L2]afs[8]o
[[2afs]os o]

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2013 Pearson Education, Inc. Al 3
ights reserved

6 |

How to Insert?

The insertion sort 01110 2) 41 15) 6
algorithm sorts a list tist Step 1: Save 4 to a temporary variable currentElement
of values by

) . 101 1) 21 3] @1 15 161
repeatedly inserting [T —

an unsorted element
into a sorted sublist
until the whole list

Step 2: Move list[2] to list[3]

[0] [1] 121 [3] [4] [5] [6]
st Step 3: Move list[1] to list[2]

: 0] [1] [2] [3] [4] 5] [6]
is sorted. [0] [17 121 [3] [4] [5] [6]
list [24 5 9 Step 4: Assign tolist[1]
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All =

rights reserved.

From Idea to Solution

for (int i = 1; i < list.length; i++) {
insert list[i] into a sorted sublist 1list[0..i-1] so that
list[0..i] is sorted

}

list[0]
1ist[0] list[1]

list[0] list[1] list[2]

4

1ist[0] list[1] list[2] list[3]

list[0] list[1] list[2] list[3]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All P
rights reserved.

From Idea to Solution

for (int i = 1; i < list.length; i++) {
insert list[i] into a sorted sublist 1list[0..i-1] so that
lisg[0..i] is sorted

}

Expand

double currentElement = list[i];
int k;

for (k =i - 1; k > 0 && list[k] > currentElement; k--) {
list[k + 1] = list[k];

}

// Insert the current element into list[k + 1]

list[k + 1] = currentElement;

InsertSort -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

A\

Bubble Sort

[2]o]5]4]s]1]|[25Ta s 1o 1|[2la]s[n]s[o]|[2Ta 1 5 [s o]| (]2l [5[s[9]
2590481245819 (245189

214589
2549811245819 (241589
254891(245189
254819
(a) 1st pass (b) 2nd pass (c) 3rd pass (d) 4th pass (e) 5th pass
Bubble sort time: O(n?) \
non
n D+ 2)+..+2+1=— —
(n D+(n 2) 7 3
BubbleSort

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All -
ights reserved.

Bubble Sort Animation

http://www.cs.armstrong.edu/liang/animation/web/BubbleSort.html

€ = € [T www.cs.amstrong.edy/lana/animaion/web/BubbieSort bl

Bubble Sort Animation by Y. Daniel L

Rt

Bubbic Sort Anerat

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2013 Pearson Education, Inc. All
rights reserved.

v

Merge Sort

Merge Sort

[2[oIs[4[s[1 el7] .
split N mergeSort(list):
2]915[4 8[1]6[7 firstHalf = mergeSort(firstHalf);
split divide secondHalf = mergeSort(secondHalf);
it list = merge(firstHalf, secondHalf);
merge N
conquer
merge \ \
merge _
[1T2[4]s]6[7]8p]
MergeSort
Liang, Introduction to Java ngvammw:‘gg‘h::c:::l::m (c) 2013 Pearson Education, Inc. All]3- Liang, Introduction to Java Frogrammll:lgg.hr‘e:zjsgfn‘(cy 2013 Pearson Education, Inc. All 14‘
Merge Two Sorted Lists Merge Sort Time
Let 7(n) denote the time required for sorting an
1 2 e . .
el ot gl e array of 7 elements using merge sort. Without loss
Basa of generality, assume # is a power of 2. The merge

current3 current3 current3

(a) After moving 1 to temp (b) After moving all the (c) After moving 9 to

elements in list2 to temp temp
Animation for Merging Two Sorted Lists '
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All -

rights reserved.

sort algorithm splits the array into two subarrays,
sorts the subarrays using the same algorithm
recursively, and then merges the subarrays. So,

N\

T(n)= T(%) + T(%) + mergetime

T(n)= T(g) + T(g) +0(n)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All >
rights reserved.

Merge Sort Time

The first T(n/2) is the time for sorting the first
half of the array and the second T(n/2) is the time
for sorting the second half. To merge two
subarrays, it takes at most n-/ comparisons to
compare the elements from the two subarrays and
n moves to move elements to the temporary array.
So, the total time is 2n-1. Therefore,

n n n 2 n
T(n)=2T(3)+2n 1=2QT(-)+2= D+2n 1=2"T(s)+2n 2+2n 1
(m)=2T(¢)+2n QTC)+25 D+2n Gp)+2n n \

:2*T(%)+2n 264 +2n 2420 1

n
e
=n+2nlogn 2" +1=2nlogn+1=0(nlogn)

=2k y+2n 2" 'y 427 242n 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All 17>
rights reserved.

Quick Sort

Quick sort, developed by C. A. R. Hoare (1962),
works as follows: The algorithm selects an element,
called the pivot, in the array. Divide the array into
two parts such that all the elements in the first part
are less than or equal to the pivot and all the
elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2013 Pearson Education, Inc. All ™
rights reserved.

Quick Sort

Eﬂ (a) The original array
p

pivot ivot

E (b)The original array is partitioned
pivot
(c) The partial array (42 13 0) is
m partitioned
pivot
BB (d) The partial array (02 1 3) is \
partitioned
(e) The partial array (2 1 3) is
partitioned
Liang, Introduction to Java Programming, Tenth Ediion, (c) 2013 Pearson Education, Inc. Al -

rights reserved.

Partition g
[s[2]9]3]8]4]o[1]6[7 (a) Initialize pivot, low, and high
pivot low high

. Animation for
partition [s[2[o[3]8[4]o[1[6[7] (b) Scarch forward and backward

pivot low high
HEDBEEDEGE

igh
pivot low high

(c) 9 is swapped with 1

(d) Continue search

(¢) 8 iis swapped with 0

pivot low high \
(5]2[1[3[0[4]8[9[6]7] (£ when high < low, scarch is over
pivot

II (g) pivot is in the right place

The index of the pivot is returned

QuickSort -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. Al o
righs reserved

Quick Sort Time

To partition an array of n elements, it takes n-/
comparisons and n moves in the worst case. So,
the time required for partition is O(n).

/

Edition, (c) 2013 Pearson Education, Inc. All A
d

Liang, Introduction to Java Programming, Te
rights reserve

Worst-Case Time

In the worst case, each time the pivot divides the
array into one big subarray with the other empty.
The size of the big subarray is one less than the
one before divided. The algorithm requires o
time:

(n DHn D+.+2+1=0(n) \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. Al >
right d -

Best-Case Time

In the best case, each time the pivot divides the
array into two parts of about the same size. Let
T(n) denote the time required for sorting an array
of elements using quick sort. So,

T(n)= T(g) + T(%) +n=0(nlogn)

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All -~
rights reserve .

Average-Case Time

On the average, each time the pivot will not
divide the array into two parts of the same size
nor one empty part. Statistically, the sizes of the
two parts are very close. So the average time is
O(nlogn). The exact average-case analysis is
beyond the scope of this book.

N\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. Al -
righs reserved

Computational Complexity
(Big O)

+ T(n)=0(1)

+ T(n)=0O(log n)
+ T(n)=0O(n)

+ T(n)=O(nlog n)
+ T(n)=0(n?)

+ T(n)=0(n%)

// constant time
// logarithmic
// linear

// linearithmic

// quadratic
// cubic

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All

rights reserved.

/

Complexity Examples

Big-O Complexity Chart
(Horribe] sad] Fair] (Good]
0(n"2)

Operations

Oln)

Oflog n), O(1)

Elements

http://bigocheatsheet.com/

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2013 Pearson Education, Inc. All
rights reserved.

4

Complexity Examples

Array Sorting Algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst

icksort

Mergesort [acn log(ndd] [6Cn Tog(md] [0Cn Togln))]

Timsort 6(n log(n)| [0Cn log(n))

Heapsort [acn log(n)d] [6Cn Togmd] [0Cn Togln))]

Bubble Sort

Insertion Sort o)

Selection Sort

Tree Sort [ACn Tog())] [BCn Tog(n))]

Shell Sort [ACn 1og(n))] [@CnCTog(n))"2)] [0CnClog(ny)"2d]

Bucket Sort

Radix Sort [ocn+0]

Counting Sort

Cubesort 0Cn Tog(n)

http://bigocheatsheet.com/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

/

Why does it matter?

50 100 1,000 10,000 100,000

<ls

O(log(n)) <ls
O(n) <ls
O(n*log(n)) <ls

O(n?)
O(n?)
OoQ2)
O(n!)
O(nn)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

