
7/18/16

1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1

Chapter 3: Selections and
Conditionals

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

2

Motivations
If you assigned a negative value for radius in
Listing 2.2, ComputeAreaWithConsoleInput.java,
the program would print an invalid result. If the
radius is negative, you don't want the program to
compute the area. How can you deal with this
situation?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 3

Objectives
§ To declare boolean variables and write Boolean expressions using relational

operators (§3.2).
§ To implement selection control using one-way if statements (§3.3).
§ To implement selection control using two-way if-else statements (§3.4).
§ To implement selection control using nested if and multi-way if statements

(§3.5).
§ To avoid common errors and pitfalls in if statements (§3.6).
§ To generate random numbers using the Math.random() method (§3.7).
§ To program using selection statements for a variety of examples

(SubtractionQuiz, BMI, ComputeTax) (§§3.7–3.9).
§ To combine conditions using logical operators (&&, ||, and !) (§3.10).
§ To program using selection statements with combined conditions (LeapYear,

Lottery) (§§3.11–3.12).
§ To implement selection control using switch statements (§3.13).
§ To write expressions using the conditional expression (§3.14).
§ To examine the rules governing operator precedence and associativity (§3.15).
§ To apply common techniques to debug errors (§3.16).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

4

The boolean Type and Operators

Often in a program you need to compare two
values, such as whether i is greater than j. Java
provides six comparison operators (also known
as relational operators) that can be used to
compare two values. The result of the
comparison is a Boolean value: true or false.

boolean b = (1 > 2);

7/18/16

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

5

Relational Operators
 Java Mathematics Name Example Result

Operator Symbol (radius is 5)

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

6

Problem: A Simple Math Learning Tool

Run

This example creates a program to let a first grader
practice additions. The program randomly
generates two single-digit integers number1 and
number2 and displays a question such as “What is
7 + 9?” to the student. After the student types the
answer, the program displays a message to indicate
whether the answer is true or false.

IMPORTANT NOTE: If you cannot run the
buttons, see
www.cs.armstrong.edu/liang/javaslidenote.doc
.

AdditionQuiz

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

7

One-way if Statements

if (boolean-expression) {
statement(s);

}

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area"
+ " for the circle of radius "
+ radius + " is " + area);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

8

Note
 if i > 0 {
 System.out.println("i is positive ");
}

(a) W ron g (b) C orre ct

if (i > 0) {
 System.out.println("i is positive");
}

 i f (i > 0) {
 System .out.pr intln(" i is po sitive");
}

(a)

Equ iva lent

(b)

if (i > 0)
 Syste m.out. println ("i is positiv e");

7/18/16

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

9

Simple if Demo

Run

Write a program that prompts the user to enter an integer. If the
number is a multiple of 5, print HiFive. If the number is divisible
by 2, print HiEven.

SimpleIfDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

10

The Two-way if Statement
if (boolean-expression) {

statement(s)-for-the-true-case;

}
else {

statement(s)-for-the-false-case;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

11

if-else Example
if (radius >= 0) {
area = radius * radius * 3.14159;

System.out.println("The area for the “
+ “circle of radius " + radius +
" is " + area);

}
else {
System.out.println("Negative input");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

12

Multiple Alternative if Statements

 if (score >= 90.0)
 System.out.print("A");
else
 if (score >= 80.0)
 System.out.print("B");
 else
 if (score >= 70.0)
 System.out.print("C");
 else
 if (score >= 60.0)
 System.out.print("D");
 else
 System.out.print("F");

 (a)

Equivalent

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

(b)

This is better

7/18/16

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

13

Multi-Way if-else Statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

14

Trace if-else statement

if (score >= 90.0)
System.out.print("A");

else if (score >= 80.0)
System.out.print("B");

else if (score >= 70.0)
System.out.print("C");

else if (score >= 60.0)
System.out.print("D");

else
System.out.print("F");

Suppose score is 70.0 The condition is false

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

15

Trace if-else statement

if (score >= 90.0)
System.out.print("A");

else if (score >= 80.0)
System.out.print("B");

else if (score >= 70.0)
System.out.print("C");

else if (score >= 60.0)
System.out.print("D");

else
System.out.print("F");

Suppose score is 70.0 The condition is false

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

16

Trace if-else statement

if (score >= 90.0)
System.out.print("A");

else if (score >= 80.0)
System.out.print("B");

else if (score >= 70.0)
System.out.print("C");

else if (score >= 60.0)
System.out.print("D");

else
System.out.print("F");

Suppose score is 70.0 The condition is true

animation

7/18/16

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

17

Trace if-else statement

if (score >= 90.0)
System.out.print("A");

else if (score >= 80.0)
System.out.print("B");

else if (score >= 70.0)
System.out.print("C");

else if (score >= 60.0)
System.out.print("D");

else
System.out.print("F");

Suppose score is 70.0 grade is C

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

18

Trace if-else statement

if (score >= 90.0)
System.out.print("A");

else if (score >= 80.0)
System.out.print("B");

else if (score >= 70.0)
System.out.print("C");

else if (score >= 60.0)
System.out.print("D");

else
System.out.print("F");

Suppose score is 70.0 Exit the if statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

19

Note
The else clause matches the most recent if clause in the
same block.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

20

Note, cont.
Nothing is printed from the preceding statement. To force
the else clause to match the first if clause, you must add a
pair of braces:

int i = 1;

int j = 2;

int k = 3;

if (i > j) {

if (i > k)

System.out.println("A");

}

else

System.out.println("B");

This statement prints B.

7/18/16

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

21

Common Errors
Adding a semicolon at the end of an if clause is a common
mistake.
if (radius >= 0);
{
area = radius*radius*PI;
System.out.println(
"The area for the circle of radius " +
radius + " is " + area);

}
This mistake is hard to find, because it is not a compilation error or
a runtime error, it is a logic error.
This error often occurs when you use the next-line block style.

Wrong

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

22

TIP
 if (number % 2 == 0)
 even = true;
else
 even = false;

(a)

Equivalent

boolean even
 = number % 2 == 0;

 (b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

23

CAUTION

 if (even == true)
 System.out.println(
 "It is even.");

(a)

Equivalent if (even)
 System.out.println(
 "It is even.");

(b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

24

Problem: An Improved Math Learning Tool
This example creates a program to teach a
first grade child how to learn subtractions.
The program randomly generates two single-
digit integers number1 and number2 with
number1 >= number2 and displays a question
such as “What is 9 – 2?” to the student. After
the student types the answer, the program
displays whether the answer is correct.

SubtractionQuiz Run

7/18/16

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

25

Problem: Body Mass Index
Body Mass Index (BMI) is a measure of health on
weight. It can be calculated by taking your weight
in kilograms and dividing by the square of your
height in meters. The interpretation of BMI for
people 16 years or older is as follows:
 BMI Interpretation

 BMI < 18.5 Underweight

18.5 <= BMI < 25.0 Normal
25.0 <= BMI < 30.0 Overweight
30.0 <= BMI Obese

ComputeAndInterpretBMI Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

26

Problem: Computing Taxes
The US federal personal income tax is calculated
based on the filing status and taxable income.
There are four filing statuses: single filers, married
filing jointly, married filing separately, and head of
household. The tax rates for 2009 are shown below.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

27

Problem: Computing Taxes, cont.
if (status == 0) {

// Compute tax for single filers
}
else if (status == 1) {

// Compute tax for married file jointly
// or qualifying widow(er)

}
else if (status == 2) {

// Compute tax for married file separately
}
else if (status == 3) {

// Compute tax for head of household
}

else {
// Display wrong status

} ComputeTax Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

28

Logical Operators

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

7/18/16

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

29

Truth Table for Operator !

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150) is false.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

30

Truth Table for Operator &&
p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false (age <= 18) && (weight < 140) is false, because both

conditions are both false.

false true false

true false false (age > 18) && (weight > 140) is false, because (weight

> 140) is false.

true true true (age > 18) && (weight >= 140) is true, because both

(age > 18) and (weight >= 140) are true.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

31

Truth Table for Operator ||

p1 p2 p1 || p2 Example (assume age = 24, weihgt = 140)

false false false

false true true (age > 34) || (weight <= 140) is true, because (age > 34)

is false, but (weight <= 140) is true.

true false true (age > 14) || (weight >= 150) is false, because

(age > 14) is true.

true true true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

32

Truth Table for Operator ^
p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is true, because (age > 34) is false

and (weight > 140) is false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34) is false

but (weight >= 140) is true.

true false true (age > 14) ^ (weight > 140) is true, because (age > 14) is

true and (weight > 140) is false.

true true false

7/18/16

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

33

Examples
Here is a program that checks whether a number is divisible by 2
and 3, whether a number is divisible by 2 or 3, and whether a
number is divisible by 2 or 3 but not both:

TestBooleanOperators Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

34

Examples
System.out.println("Is " + number + " divisible by 2 and 3? " +

((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

((number % 2 == 0) || (number % 3 == 0)));

System.out.println("Is " + number +

" divisible by 2 or 3, but not both? " +

((number % 2 == 0) ^ (number % 3 == 0)));

TestBooleanOperators

Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

35

The & and | Operators

Supplement III.B, “The & and | Operators”

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

36

The & and | Operators
If x is 1, what is x after this
expression?

(x > 1) & (x++ < 10)

If x is 1, what is x after this
expression?

(1 > x) && (1 > x++)

How about (1 == x) | (10 > x++)?

(1 == x) || (10 > x++)?

Companion
Website

7/18/16

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

37

Problem: Determining Leap Year?

This program first prompts the user to enter a year as
an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by
100, or it is divisible by 400.

(year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)

LeapYear Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

38

Problem: Lottery
Write a program that randomly generates a lottery of a two-
digit number, prompts the user to enter a two-digit number,
and determines whether the user wins according to the
following rule:
• If the user input matches the lottery in exact order, the

award is $10,000.
• If the user input matches the lottery, the award is

$3,000.
• If one digit in the user input matches a digit in the

lottery, the award is $1,000.

Lottery Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

39

switch Statements
switch (status) {
case 0: compute taxes for single filers;

break;
case 1: compute taxes for married file jointly;

break;
case 2: compute taxes for married file separately;

break;
case 3: compute taxes for head of household;

break;
default: System.out.println("Errors: invalid status");

System.exit(1);
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

40

switch Statement Flow Chart

7/18/16

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

41

switch Statement Rules

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
…
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The switch-expression
must yield a value of char,
byte, short, or int type and
must always be enclosed in
parentheses.

The value1, ..., and valueN must
have the same data type as the
value of the switch-expression.
The resulting statements in the
case statement are executed when
the value in the case statement
matches the value of the switch-
expression. Note that value1, ...,
and valueN are constant
expressions, meaning that they
cannot contain variables in the
expression, such as 1 + x.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

42

switch Statement Rules

The keyword break is optional,
but it should be used at the end of
each case in order to terminate the
remainder of the switch
statement. If the break statement
is not present, the next case
statement will be executed.

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
…
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The default case, which is
optional, can be used to perform
actions when none of the
specified cases matches the
switch-expression.

When the value in a case statement matches the value
of the switch-expression, the statements starting from
this case are executed until either a break statement or
the end of the switch statement is reached.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

43

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Suppose day is 2:

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

44

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Match case 2

animation

7/18/16

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

45

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Fall through case 3

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

46

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Fall through case 4

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

47

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Fall through case 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

48

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Encounter break

animation

7/18/16

13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

49

Trace switch statement

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Exit the statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

50

Problem: Chinese Zodiac
Write a program that prompts the user to enter a year
and displays the animal for the year.

ChineseZodiac Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

51

Conditional Expressions
if (x > 0)
y = 1

else
y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(boolean-expression) ? expression1 : expression2

Ternary operator
Binary operator
Unary operator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

52

Conditional Operator

if (num % 2 == 0)
System.out.println(num + “is even”);

else
System.out.println(num + “is odd”);

System.out.println(
(num % 2 == 0)? num + “is even” :
num + “is odd”);

7/18/16

14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

53

Conditional Operator, cont.

boolean-expression ? exp1 : exp2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

54

Operator Precedence
✦ ()

✦ var++, var--

✦ +, - (Unary plus and minus), ++var,--var
✦ (type) Casting

✦ ! (Not)

✦ *, /, % (Multiplication, division, and remainder)

✦ +, - (Binary addition and subtraction)

✦ <, <=, >, >= (Relational operators)

✦ ==, !=; (Equality)

✦ ^ (Exclusive OR)

✦ && (Conditional AND) Short-circuit AND

✦ || (Conditional OR) Short-circuit OR

✦ =, +=, -=, *=, /=, %= (Assignment operator)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

55

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

56

Operator Associativity
When two operators with the same precedence
are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are left-
associative.
a – b + c – d is equivalent to ((a – b) + c) – d
Assignment operators are right-associative.
Therefore, the expression
a = b += c = 5 is equivalent to a = (b += (c = 5))

7/18/16

15

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

57

Example
Applying the operator precedence and associativity rule,
the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

58

Operand Evaluation Order
Supplement III.A, “Advanced discussions on
how an expression is evaluated in the JVM.”

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

59

Debugging
Logic errors are called bugs. The process of finding and
correcting errors is called debugging. A common approach
to debugging is to use a combination of methods to narrow
down to the part of the program where the bug is located.
You can hand-trace the program (i.e., catch errors by
reading the program), or you can insert print statements in
order to show the values of the variables or the execution
flow of the program. This approach might work for a short,
simple program. But for a large, complex program, the
most effective approach for debugging is to use a debugger
utility.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

60

Debugger
Debugger is a program that facilitates debugging.
You can use a debugger to

✦Execute a single statement at a time.
✦Trace into or stepping over a method.
✦Set breakpoints.
✦Display variables.
✦Display call stack.
✦Modify variables.

7/18/16

16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

61

Debugging in Eclipse

Supplement II.G, Learning Java Effectively with
Eclipse

Companion
Website

