
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

1

Chapter 7: Single-Dimensional
Arrays

CS1: Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

2

Opening Problem
Read one hundred numbers, compute their
average, and find out how many numbers are
above the average.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

3

Objectives
✦ To describe why arrays are necessary in programming (§7.1).
✦ To declare array reference variables and create arrays (§§7.2.1–7.2.2).
✦ To obtain array size using arrayRefVar.length and know default values in an array (§7.2.3).
✦ To access array elements using indexes (§7.2.4).
✦ To declare, create, and initialize an array using an array initializer (§7.2.5).
✦ To program common array operations (displaying arrays, summing all elements, finding the

minimum and maximum elements, random shuffling, and shifting elements) (§7.2.6).
✦ To simplify programming using the foreach loops (§7.2.7).
✦ To apply arrays in application development (AnalyzeNumbers, DeckOfCards) (§§7.3–7.4).
✦ To copy contents from one array to another (§7.5).
✦ To develop and invoke methods with array arguments and return values (§§7.6–7.8).
✦ To define a method with a variable-length argument list (§7.9).
✦ To search elements using the linear (§7.10.1) or binary (§7.10.2) search algorithm.
✦ To sort an array using the selection sort approach (§7.11).
✦ To use the methods in the java.util.Arrays class (§7.12).
✦ To pass arguments to the main method from the command line (§7.13).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

4

Introducing Arrays
Array is a data structure that represents a collection of the
same types of data.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

5

Declaring Array Variables
✦ datatype[] arrayRefVar;

Example:

double[] myList;

✦ datatype arrayRefVar[]; // This style is
allowed, but not preferred

Example:

double myList[];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

6

Creating Arrays
arrayRefVar = new datatype[arraySize];

Example:
myList = new double[10];

myList[0] references the first element in the array.
myList[9] references the last element in the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

7

Declaring and Creating
in One Step

✦ datatype[] arrayRefVar = new

datatype[arraySize];

double[] myList = new double[10];

✦ datatype arrayRefVar[] = new
datatype[arraySize];

double myList[] = new double[10];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

8

The Length of an Array

Once an array is created, its size is fixed. It cannot be
changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

9

Default Values
When an array is created, its elements are
assigned the default value of

0 for the numeric primitive data types,
'\u0000' for char types, and
false for boolean types.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

10

Indexed Variables
The array elements are accessed through the index. The
array indices are 0-based, i.e., it starts from 0 to
arrayRefVar.length-1. In the example in Figure 6.1,
myList holds ten double values and the indices are
from 0 to 9.

Each element in the array is represented using the
following syntax, known as an indexed variable:

arrayRefVar[index];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

11

Using Indexed Variables
After an array is created, an indexed variable can
be used in the same way as a regular variable.
For example, the following code adds the value
in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

12

Array Initializers

✦ Declaring, creating, initializing in one step:
double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one
statement.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

13

Declaring, creating, initializing
Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the
following statements:
double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

14

CAUTION
Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting it would cause a syntax
error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

15

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

Declare array variable values, create an
array, and assign its reference to values

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

16

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

i becomes 1

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

17

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

i (=1) is less than 5

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

18

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this line is executed, value[1] is 1

After the first iteration

0

1

2

3

4

0

1

0

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

19

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After i++, i becomes 2

animation

After the first iteration

0

1

2

3

4

0

1

0

0

0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

20

Trace Program with Arrays

public class Test {
public static void main(String[]

args) {
int[] values = new int[5];
for (int i = 1; i < 5; i++) {
values[i] = i + values[i-1];

}
values[0] = values[1] +

values[4];
}

}

i (= 2) is less than 5

animation

After the first iteration

0

1

2

3

4

0

1

0

0

0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

21

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this line is executed,
values[2] is 3 (2 + 1)

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

22

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this, i becomes 3.

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

23

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

i (=3) is still less than 5.

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

24

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this line, values[3] becomes 6 (3 + 3)

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

25

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this, i becomes 4

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

26

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

i (=4) is still less than 5

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

27

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this, values[4] becomes 10 (4 + 6)

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

28

Trace Program with Arrays

public class Test {
public static void main(String[] args) {
int[] values = new int[5];
for (int i = 1; i < 5; i++) {
values[i] = i + values[i-1];

}
values[0] = values[1] + values[4];

}
}

After i++, i becomes 5

animation

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

29

Trace Program with Arrays

public class Test {
public static void main(String[] args) {
int[] values = new int[5];
for (int i = 1; i < 5; i++) {
values[i] = i + values[i-1];

}
values[0] = values[1] + values[4];

}
}

i (=5) < 5 is false. Exit the loop

animation

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

30

Trace Program with Arrays

public class Test {
public static void main(String[] args) {

int[] values = new int[5];
for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];
}
values[0] = values[1] + values[4];

}
}

After this line, values[0] is 11 (1 + 10)

0

1

2

3

4

11

1

3

6

10

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

31

Processing Arrays
See the examples in the text.
1. (Initializing arrays with input values)

2. (Initializing arrays with random values)
3. (Printing arrays)
4. (Summing all elements)

5. (Finding the largest element)
6. (Finding the smallest index of the largest element)

7. (Random shuffling)
8. (Shifting elements)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

32

Initializing arrays with input values

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
myList[i] = input.nextDouble();

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

33

Initializing arrays with random values

for (int i = 0; i < myList.length; i++) {
myList[i] = Math.random() * 100;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

34

Printing arrays

for (int i = 0; i < myList.length; i++) {
System.out.print(myList[i] + " ");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

35

Summing all elements

double total = 0;
for (int i = 0; i < myList.length; i++) {
total += myList[i];

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

36

Finding the largest element

doublemax = myList[0];
for (int i = 1; i < myList.length; i++) {
if (myList[i] > max) max = myList[i];

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

37

Random shuffling
 for (int i = 0; i < myList.length - 1; i++) {
 // Generate an index j randomly
 int j = (int)(Math.random()
 * myList.length);

 // Swap myList[i] with myList[j]
 double temp = myList[i];
 myList[i] = myList[j];
 myList[j] = temp;
}

myList
[0]
[1]

.

.

.

A random index

i

swap

.

.

.

[i]

 [j]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

38

Shifting Elements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

39

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array
sequentially without using an index variable. For example, the following code
displays all elements in the array myList:

for (double value: myList)
System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {
// Process the value

}

You still have to use an index variable if you wish to traverse the array in a
different order or change the elements in the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

40

Analyze Numbers
Read one hundred numbers, compute their
average, and find out how many numbers are
above the average.

AnalyzeNumbers Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

41

Problem: Deck of Cards
The problem is to write a program that picks four cards
randomly from a deck of 52 cards. All the cards can be
represented using an array named deck, filled with initial
values 0 to 51, as follows:

int[] deck = new int[52];

// Initialize cards

for (int i = 0; i < deck.length; i++)

deck[i] = i;

DeckOfCards Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

42

Problem: Deck of Cards, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

43

Problem: Deck of Cards, cont.

GUI Demo (picking four cards) DeckOfCards Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

44

Problem: Deck of Cards
This problem builds a foundation for future more interesting and
realistic applications:

See Exercise 20.15.

Run 24 Point Game

http://www.cs.armstrong.edu/liang/anim
ation/web/24Point.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

45

Problem: Lotto Numbers
Suppose you play the Pick-10 lotto. Each ticket has
10 unique numbers ranging from 1 to 99. You buy
a lot of tickets. You like to have your tickets to
cover all numbers from 1 to 99. Write a program
that reads the ticket numbers from a file and checks
whether all numbers are covered. Assume the last
number in the file is 0.

Lotto Numbers Sample Data

Companion
Website

LottoNumbers Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

46

Problem: Lotto Numbers

false

false

false

false

.

.

 .

false

false

isCovered

 [0]
 [1]

[2]

 [3]

[98]

(a)

[97]

true

false

false

false

.

.

 .

false

false

isCovered

 [0]
 [1]

[2]

 [3]

[98]

(b)

[97]

true

true

false

false

.

.

 .

false

false

isCovered

 [0]
 [1]

[2]

 [3]

[98]

(c)

[97]

true

true

true

false

.

.

 .

false

false

isCovered

 [0]
 [1]

[2]

 [3]

[98]

(d)

[97]

true

true

true

false

.

.

 .

false

true

isCovered

 [0]
 [1]

[2]

 [3]

[98]

(e)

[97]

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

47

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an array.
In such cases you could attempt to use the assignment statement (=), as
follows:

list2 = list1;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

48

Copying Arrays
Using a loop:
int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new
int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)
targetArray[i] = sourceArray[i];

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

49

The arraycopy Utility
arraycopy(sourceArray, src_pos,
targetArray, tar_pos, length);

Example:
System.arraycopy(sourceArray, 0,
targetArray, 0, sourceArray.length);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

50

Passing Arrays to Methods
public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");

}
}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

51

Anonymous Array
The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:

new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.
Such array is called an anonymous array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

52

Pass By Value
Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

✦ For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

✦ For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method. Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

53

public class Test {
public static void main(String[] args) {

int x = 1; // x represents an int value
int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.out.println("x is " + x);
System.out.println("y[0] is " + y[0]);

}

public static void m(int number, int[] numbers) {
number = 1001; // Assign a new value to number

numbers[0] = 5555; // Assign a new value to numbers[0]
}

}

Simple Example

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

54

Call Stack

When invoking m(x, y), the values of x and y are passed
to number and numbers. Since y contains the reference
value to the array, numbers now contains the same
reference value to the same array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

55

Call Stack

When invoking m(x, y), the values of x and y are
passed to number and numbers. Since y contains the
reference value to the array, numbers now contains the
same reference value to the same array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

56

Heap

Space required for the
main method
 int[] y:
 int x: 1

reference

The arrays are
stored in a
heap.

Heap

 5555
 0

 0

The JVM stores the array in an area of memory,
called heap, which is used for dynamic memory
allocation where blocks of memory are allocated and
freed in an arbitrary order.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

57

Passing Arrays as Arguments

✦ Objective: Demonstrate differences of
passing primitive data type variables
and array variables.

TestPassArray Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

58

Example, cont.

Invoke swap(int n1, int n2).
The primitive type values in
a[0] and a[1] are passed to the
swap method.

Space required for the
main method
 int[] a

Stack

Space required for the
swap method

n2: 2
n1: 1

reference a[1]: 2
a[0]: 1

The arrays are
stored in a
heap.

Invoke swapFirstTwoInArray(int[] array).
The reference value in a is passed to the
swapFirstTwoInArray method.

Heap

Space required for the
main method
 int[] a

Stack
Space required for the
swapFirstTwoInArray
method
 int[] array

reference

reference

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

59

Returning an Array from a Method
public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

60

Trace the reverse Method

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

Declare result and create array

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

61

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i = 0 and j = 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

62

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i (= 0) is less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

63

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i = 0 and j = 5
Assign list[0] to result[5]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

64

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

After this, i becomes 1 and j
becomes 4

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

65

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i (=1) is less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

66

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i = 1 and j = 4
Assign list[1] to result[4]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

67

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

After this, i becomes 2 and
j becomes 3

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

68

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i (=2) is still less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

69

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i = 2 and j = 3
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

70

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

After this, i becomes 3 and
j becomes 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

71

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i (=3) is still less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

72

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i = 3 and j = 2
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

73

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

After this, i becomes 4 and
j becomes 1

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

74

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i (=4) is still less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

75

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i = 4 and j = 1
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

76

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

After this, i becomes 5 and
j becomes 0

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

77

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i (=5) is still less than 6

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

78

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i = 5 and j = 0
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

79

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

After this, i becomes 6 and
j becomes -1

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

80

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i (=6) < 6 is false. So exit
the loop.

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

81

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {

result[j] = list[i];
}

return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

Return result

list2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

82

Problem: Counting Occurrence of Each
Letter

✦ Generate 100 lowercase letters randomly and assign to an array of
characters.

✦ Count the occurrence of each letter in the array.

CountLettersInArray Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

83

Variable-Length Arguments
You can pass a variable number of arguments of the same
type to a method.

VarArgsDemo Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

84

Searching Arrays

 public class LinearSearch {
 /** The method for finding a key in the list */
 public static int linearSearch(int[] list, int key) {
 for (int i = 0; i < list.length; i++)
 if (key == list[i])
 return i;
 return -1;
 }
}

 list

key Compare key with list[i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

85

Linear Search
The linear search approach compares the key
element, key, sequentially with each element in
the array list. The method continues to do so
until the key matches an element in the list or
the list is exhausted without a match being
found. If a match is made, the linear search
returns the index of the element in the array
that matches the key. If no match is found, the
search returns -1.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

86

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

87

http://www.cs.armstrong.edu/liang/animation/web/Linear
Search.html

Linear Search Animation
animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

88

From Idea to Solution
/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)

if (key == list[i])

return i;

return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

Trace the method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

89

Binary Search
For binary search to work, the elements in the
array must already be ordered. Without loss of
generality, assume that the array is in
ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79
The binary search first compares the key with
the element in the middle of the array.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

90

Binary Search, cont.

✦ If the key is less than the middle element,
you only need to search the key in the first
half of the array.

✦ If the key is equal to the middle element,
the search ends with a match.

✦ If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

91

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

92

http://www.cs.armstrong.edu/liang/animation/web/Binary
Search.html

Binary Search Animation
animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

93

Binary Search, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

94

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 54

 key > 50
 list

mid

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
 key < 66

 key < 59

high low

mid high low

 list

 [7] [8]

mid high low

 list

 59 60 66 69 70 79

 59 60

 [6] [7] [8]

high low

 59 60

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

95

Binary Search, cont.
The binarySearch method returns the index of the
element in the list that matches the search key if it
is contained in the list. Otherwise, it returns

-insertion point - 1.

The insertion point is the point at which the key
would be inserted into the list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

96

From Idea to Soluton
/** Use binary search to find the key in the list */
public static int binarySearch(int[] list, int key) {
int low = 0;
int high = list.length - 1;

while (high >= low) {
int mid = (low + high) / 2;
if (key < list[mid])
high = mid - 1;

else if (key == list[mid])
return mid;

else
low = mid + 1;

}

return -1 - low;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

97

The Arrays.binarySearch Method
Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("Index is " +
java.util.Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("Index is " +
java.util.Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must be pre-sorted in increasing
order.

Return is 4

Return is –4 (insertion point is
3, so return is -3-1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

98

Sorting Arrays
Sorting, like searching, is also a common task in
computer programming. Many different algorithms
have been developed for sorting. This section
introduces a simple, intuitive sorting algorithms:
selection sort.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

99

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

100

http://www.cs.armstrong.edu/liang/animation/web/Selecti
onSort.html

Selection Sort Animation
animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

101

From Idea to Solution
for (int i = 0; i < list.length; i++) {

select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i+1..listSize-1]

}

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

...

list[0] list[1] list[2] list[3] ... list[10]

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

102

Expand

for (int i = 0; i < listSize; i++) {
select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i..listSize-1]

}

double currentMin = list[i];
int currentMinIndex = i;
for (int j = i+1; j < list.length; j++) {

if (currentMin > list[j]) {
currentMin = list[j];
currentMinIndex = j;

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

103

Expand

for (int i = 0; i < listSize; i++) {
select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i..listSize-1]

}

double currentMin = list[i];
int currentMinIndex = i;
for (int j = i; j < list.length; j++) {

if (currentMin > list[j]) {
currentMin = list[j];
currentMinIndex = j;

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

104

Expand

for (int i = 0; i < listSize; i++) {
select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i..listSize-1]

}

if (currentMinIndex != i) {
list[currentMinIndex] = list[i];
list[i] = currentMin;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

105

Wrap it in a Method
/** The method for sorting the numbers */

public static void selectionSort(double[] list) {
for (int i = 0; i < list.length; i++) {

// Find the minimum in the list[i..list.length-1]
double currentMin = list[i];
int currentMinIndex = i;
for (int j = i + 1; j < list.length; j++) {

if (currentMin > list[j]) {
currentMin = list[j];
currentMinIndex = j;

}
}

// Swap list[i] with list[currentMinIndex] if necessary;
if (currentMinIndex != i) {

list[currentMinIndex] = list[i];
list[i] = currentMin;

}
}

}

Invoke it

selectionSort(yourList)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

106

The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars);

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicore
for fast sorting.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

107

The Arrays.toString(list) Method
The Arrays.toString(list) method can be used to return a string

representation for the list.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

108

Pass Arguments to Invoke the Main
Method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

109

Main Method Is Just a Regular Method

 public class A {
 public static void main(String[] args) {
 String[] strings = {"New York",
 "Boston", "Atlanta"};
 B.main(strings);
 }
}

class B {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

You can call a regular method by passing actual
parameters. Can you pass arguments to main? Of
course, yes. For example, the main method in class
B is invoked by a method in A, as shown below:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

110

Command-Line Parameters

class TestMain {
public static void main(String[] args) {
...
}

}

java TestMain arg0 arg1 arg2 ... argn

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

111

Processing
Command-Line Parameters

In the main method, get the arguments from
args[0], args[1], ..., args[n], which
corresponds to arg0, arg1, ..., argn in
the command line.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

112

Problem: Calculator
✦ Objective: Write a program that will perform

binary operations on integers. The program
receives three parameters: an operator and two
integers.

java Calculator 2 + 3

java Calculator 2 - 3

java Calculator 2 / 3
java Calculator 2 . 3

Calculator

Run

