
Software Testing

CS2: Data Structures and Algorithms
Colorado State University

Chris Wilcox, Russ Wakefield, Wim Bohm,
Dave Matthews, Sudipto Ghosh

CS165: Data Structures and Algorithms – Spring Semester 2020 1

Topics

!Software Testing
!Black Box Testing
!Unit Testing with JUnit
!Test Driven Development
!White Box Testing
!Software Debugging

2CS165: Data Structures and Algorithms – Spring Semester 2020

Faults and reliability

! Software Faults (aka bugs and defects): inevitable in
a complex software system.
– 10-50 faults per 1000 lines of code in industry!

– Faults can be known or remain hidden.
– Either way, they can cause software to fail.

! Software Reliability: probability of failure of a
software system over time. Measured using
– mean time between failures, crash statistics, uptime versus

downtime.

CS165: Data Structures and Algorithms – Spring Semester 2020 3

Common faults in programs

! Incorrect logical conditions
! Calculation performed in wrong place
! Non-terminating loop or recursion
! Incorrect preconditions for an algorithm
! Not handling null conditions
! Off-by-one errors
! Operator precedence errors

CS165: Data Structures and Algorithms – Spring Semester 2020 4

Faults in numerical programs

! Overflow and underflow - Not using
enough bits

! Not using enough digits, especially places
before or after the decimal point

! Assuming a floating point value will be
exactly equal to some other value

! Ordering numerical operations poorly so
errors build up

CS165: Data Structures and Algorithms – Spring Semester 2020 5

Definitions

! Software Testing is a systematic attempt to reveal faults
in software by running test programs or scripts
(interactively or automated).

! Test case is a test input along with its expected output
– FAILING TEST: a fault was demonstrated in the software under

test.
– PASSING TEST: no fault was found (even if it existed).

! Dijkstra said: “Program testing can be used to show the
presence of bugs, but never to show their absence!”

CS165: Data Structures and Algorithms – Spring Semester 2020 6

Software Testing
! Types

– Functional, Usability, Performance, ...
! Levels

– Unit (Method/Class), Integration, System, Acceptance
! Test case creation methods

– Black-box, white-box
! Processes

– Test-Driven Development, Coverage Testing, Regression
Testing, …

CS165: Data Structures and Algorithms – Spring Semester 2020 7

Functional Testing

CS165: Data Structures and Algorithms – Spring Semester 2020 8

Exhaustive Testing?
! We consider a program to be correct if it produces

the expected output for all inputs.
! Domain of input values can be very large, e.g. 232

values for an integer or float:
int divide (int operand1, int operand2);

! 232 * 232 = 264, a large number, so we clearly cannot
test exhaustively!

! And that is just for one method, in one class, in one
package, and relatively simple.

!Thus, exhaustive testing isn’t feasible. Need smart
ways to select test inputs!

CS165: Data Structures and Algorithms – Spring Semester 2020 9

Test case creation methods

! Black-box testing
– Code, design or internal documents unavailable
– Test inputs obtained from specifications
– Expected outputs also obtained from specifications

! White-box testing
– Code, design, and internal documents available
– Test inputs obtained from code structure
– Expected outputs obtained from specifications

CS165: Data Structures and Algorithms – Spring Semester 2020 10

Black-box Testing

! Divide large input domain into a small number
of equivalence classes

! Also consider boundaries of equivalence
classes

CS165: Data Structures and Algorithms – Spring Semester 2020 11

PROGRAM

Equivalence classes
! Groups or partitions of inputs to be treated similarly
! Must be complete and disjoint
! Strategy selected is based on the problem to be solved
! Partitioning integers based on

– Sign:
" Classes are {positive ints}, {negative int}, {0}
" Choose 4, -6, and 0 as inputs

– Even or odd
" Classes are {even ints}, {odd ints}
" Choose 6 and 3 as inputs

CS165: Data Structures and Algorithms – Spring Semester 2020 12

Examples of equivalence classes

! Months represented as ints: (Red is invalid input)
– Partitions: [-∞..0], [1..12], [13..∞]
– Representative values: -4, 5, 15

! Months represented as strings:
– Each partition is a single value: “Jan”, “Feb”,

“Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”,
“Oct”, “Nov”, “Dec”, any other 3 character string.

! Month numbers grouped by number of days:
– Partitions {1,3,5,7,8,10,12}, {4,6,9,11}, {2}

CS165: Data Structures and Algorithms – Spring Semester 2020 13

Equivalence partition testing

! Test at least one value of every equivalence
class for each individual input.

! Test all combinations where one input is
likely to affect the interpretation of another
input.

! Test random combinations of equivalence
classes.

CS165: Data Structures and Algorithms – Spring Semester 2020 14

Boundary value testing

! Expand equivalence classes to test values at extremes
of each equivalence class.

! Number ranges:
– minimum, slightly above minimum, nominal or median

value, slightly below maximum, and maximum values
– values slightly and significantly outside the range

! Testing array of length 10:
– Using partitions {0}, {positive}, select indices 0, 4
– Using boundary values, select indices -1, 9, 10

CS165: Data Structures and Algorithms – Spring Semester 2020 15

Boundary value testing example

16CS165: Data Structures and Algorithms – Spring Semester 2020

Test boundaries of the parameter value domain:

How to specify expected outputs?

17CS165: Data Structures and Algorithms – Spring Semester 2020

! Find the exact expected answer by using the
specification (e.g., gcd(4,6) = 2)
– gcd(p,0) (p!=0) = Math.abs(p)
– gcd(0,q) (q!=0) = Math.abs(q)
– gcd(0,0) = 0
– gcd(p,q) (p!=0 and q!=0) = d (d>0 and d largest int such

that d divides p and d divides q)

! Find a suitable condition involving the variables
(e.g., gcd(p, q) >= 0)

! Use stronger checks as much as possible to write
more powerful test cases

JUnit
! Simple, open source framework to write and run

repeatable tests.
! Commonly used in industry for unit testing.
! Typical workflow inside a test case (or test method):

! Set up the objects involved in the test with appropriate values
! Call the method under test with appropriate parameters
! Capture the method return value and/or state information on the object

of interest
! Write assertions about the return value and/or the state information

CS165: Data Structures and Algorithms – Spring Semester 2020 18

Citation: JUnit testing framework (http://www.junit.org/)

Starting to use JUnit

19CS165: Data Structures and Algorithms – Spring Semester 2020

! Eclipse project contains a file called GCD.java in package
junitintro

! Click on File à New à JUnit Test Case to create a file called
GCDTest that tests GCD

! Remember to include the JUnit 5 library
! A JUnit test class is created with the following declarations:

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
class GCDTest {

@Test
void test() {

fail("Not yet implemented");
}

}

This test will fail because
nothing is implemented yet

Selecting inputs for greatest
common divisor (gcd)

20
CS165: Data Structures and Algorithms – Spring Semester 2020

! gcd takes two ints
! What is a good partitioning strategy?
!positive/negative useful
! even/odd NOT useful

! Use domain knowledge: presence or absence of
common factors in the numerator/denominator
!No common factor: 11, 13. Expected result 1
!Some common factor: 16, 20. Expected result 4

Writing JUnit methods

21CS165: Data Structures and Algorithms – Spring Semester 2020

@Test
void testNoCommonFactors() {

GCD g = new GCD();
int result = g.gcd(11, 13);
assertEquals(result, 1);

}

@Test
void testSomeCommonFactors() {

GCD g = new GCD();
int result = g.gcd(16, 20);
assertTrue(result==4);

}

@Test
void
testNegativeNegativeNoCommonFactor() {

GCD g = new GCD();
int result = g.gcd(-13, -20);
assertEquals(result,1,

"Expected 1");
}

public class GCD {
public int gcd (int p, int q) {
int a = Math.abs(p), b = Math.abs(q);
if(b==0) return a;
else if (a==0) return b;

int rem=1, result=1;
while(rem!=0) {

rem = a % b;
if(rem==0) result=b;
a = b; b = rem;

}
return result;

}
}

More JUnit value assertions

22CS165: Data Structures and Algorithms – Spring Semester 2020

assertTrue('a' < 'b' , "message");
assertFalse('b' < 'a');

assertEquals(1+1, 2);

assertEquals(22.0d/ 7.0d, 3.14159, 0.001);

assertEquals("cs165" , "cs165");

Citation: JUnit testing framework (http://www.junit.org/)

JUnit array assertions

23CS165: Data Structures and Algorithms – Spring Semester 2020

int[] array1 = { 1, 2, 3 };
int[] array2 = { 1, 2, 3 };

assertNull(null);
assertNotNull(array1);

assertNotSame(array1, array2);

assertArrayEquals(array1, array2);

Citation: JUnit testing framework (http://www.junit.org/)

Two Kinds of Tests

! Tests that find defects after they occur
– Often written by other developers/testers
– Or as an afterthought

! Tests that prevent defects
– Help you think about coding specific types of

cases/conditions while you are coding
– Often used in modern software development

24CS165: Data Structures and Algorithms – Spring Semester 2020

Test Driven Development

CS165: Data Structures and Algorithms – Spring Semester 2020 25

! Goal: Clean code that works!
! Drive development with automated tests

– Write new code only if tests fail
– Eliminate duplication

! Implies a different order of tasks
1. Write a test that fails first
2. Make the test work in the code

Citation: Test Driven Development, Kent Beck

Using TDD:
Creating a simple constructor

CS165: Data Structures and Algorithms – Spring Semester 2020 26

public class Rational {
private int numerator, denominator;

}

! Develop the constructor and toString code
!Let the constructor handle integers of the form p/q

where p and q are positive and have no common factors
! toString returns a string in the form of p/q

First step: Simple constructor
public class Rational {
private int numerator, denominator;

public Rational(int n, int d) {
numerator = n;
denominator = d;

}

public String toString() {
return new String(numerator +

"/" + denominator);
}

}

public class RationalTest {

@Test
void testNoCommonFactor() {

Rational r = new Rational(3, 5);
String result = r.toString();
assertEquals(result, "3/5");

}

}

27CS165: Data Structures and Algorithms – Spring Semester 2020

Using TDD: Handle zero denominator

CS165: Data Structures and Algorithms – Spring Semester 2020 28

! Let the constructor also handle integers of
the form p/q where p>0 and q==0

! This needs to throw an exception because
the number is not valid

! Since such a number can’t be created,
toString doesn’t need to handle this case

Second step: Handle zero denominator
public class Rational {

private int numerator, denominator;

public Rational(int n, int d) {
if (d==0)
throw new ArithmeticException();

numerator = n;
denominator = d;

}

public String toString() {
return new String(numerator +

"/" + denominator);
}

}

public class RationalTest {

@Test
void testNoCommonFactor() {

Rational r = new Rational(3, 5);
String result = r.toString();
assertEquals(result, "3/5");

}

@Test
void testZeroDenominator() {

try {
Rational r = new Rational(3, 0);
fail("Did not throw an

arithmetic exception");
} catch (ArithmeticException e) {
}

}
}

29CS165: Data Structures and Algorithms – Spring Semester 2020

Using TDD: Handle special cases

CS165: Data Structures and Algorithms – Spring Semester 2020 30

! Let the constructor handle integers of the form p/q
where p and q are any integers but have no common
factors
! If numerator is 0, then the denominator is stored as 1
!The sign is stored in the numerator.
!The denominator is always positive.

! toString doesn’t need to handle this case any
differently because the constructor takes care of the
representation

Third step: Handle special cases

31CS165: Data Structures and Algorithms – Spring Semester 2020

public class Rational {
private int numerator, denominator;

public Rational(int n, int d) {
if (d==0) throw new

ArithmeticException();
if (n==0) {

numerator = 0;
denominator = 1;

} else {
denominator = Math.abs(d);
numerator = (d > 0)? n: -n;

}
}
public String toString() {

return new String(numerator +
"/" + denominator);

}
}

@Test
void testPositiveNegative() {

Rational r = new Rational(3, -5);
String result = r.toString();
assertEquals(result, "-3/5");

}
@Test
void testNegativePositive() {

Rational r = new Rational(-3, 5);
String result = r.toString();
assertEquals(result, "-3/5");

}
@Test
void testNegativeNegative() {

Rational r = new Rational(-3, -5);
String result = r.toString();
assertEquals(result, "3/5");

}
@Test
void testZeroNumerator() {

Rational r = new Rational(0, -5);
String result = r.toString();
assertEquals(result, "0/1");

}

Using TDD: Handle common factors

CS165: Data Structures and Algorithms – Spring Semester 2020 32

! Let the constructor handle integers of the form
p/q where p and q are positive but have
common factors

! We need to normalize (i.e., reduce p and q to
the lowest common denominator)

! toString doesn’t need to handle this case any
differently because the constructor takes care
of the reduction

Fourth step: Handle common factors
public class Rational {
private int numerator, denominator;

public Rational(int n, int d) {
if (d==0) throw new ArithmeticException();
if (n==0) {

numerator = 0; denominator = 1;
} else {

denominator = Math.abs(d);
numerator = (d > 0)? n: -n;
reduce();

}
}
private void reduce () {

int common = gcd(numerator, denominator);
numerator = numerator / common;
denominator = denominator / common;

}

// code for toString not shown…
}

33CS165: Data Structures and Algorithms – Spring Semester 2020

@Test
void testCommonFactorPositivePositive() {

Rational r = new Rational(16, 20);
String result = r.toString();
assertEquals(result, "4/5");

}
@Test
void testCommonFactorPositiveNegative() {

Rational r = new Rational(16, -20);
String result = r.toString();
assertEquals(result, "-4/5");

}
@Test
void testCommonFactorNegativePositive() {

Rational r = new Rational(-16, 20);
String result = r.toString();
assertEquals(result, "-4/5");

}
@Test
void testCommonFactorNegativeNegative() {

Rational r = new Rational(-16, -20);
String result = r.toString();
assertEquals(result, "4/5");

}

Using TDD:
String representation for special cases

CS165: Data Structures and Algorithms – Spring Semester 2020 34

! Modify toString to print special cases
!When the numerator is 0, print 0
!When the denominator is 1 in the reduced form,

just print the numerator.

Fifth step:
String representation for special cases

public class Rational {
private int numerator, denominator;

// include other methods

public String toString() {
if (numerator==0 || denominator==1)

return new
Integer(numerator).toString();

else
return new String(numerator + "/"

+ denominator);
}

}

public class RationalTest {

// include all the previous tests
// May need to adapt prior tests
// that has zero numerator

@Test
void testNumeratorZero() {

Rational r = new Rational(0, 20);
String result = r.toString();
assertEquals(result, "0");

}
@Test
void testDenominatorOne() {

Rational r = new Rational(-16, 1);
String result = r.toString();
assertEquals(result, "-16");

}

35CS165: Data Structures and Algorithms – Spring Semester 2020

Using TDD:
Ability to check equality of numbers

CS165: Data Structures and Algorithms – Spring Semester 2020 36

! Add an equals method
! Needed if you further implement add, subtract,

multiple, and divide operations and must check their
results

! Since the constructor takes care of normalizing, we can
just compare the numerators and denominators.

! Several test cases:
!Two numbers with the same numerator and denominator
!Two numbers with different numerator and denominators
!With and w/o gcd > 1

Sixth step:
Adding the equals method

public class Rational {
private int numerator, denominator;

// include other methods

public boolean equals (Object other) {
if(other instanceof Rational) {

return (
numerator ==
((Rational)other).getNumerator()
&&
denominator ==
((Rational)other).getDenominator());
} else {

return false;
}

}

@Test void testTwoEqualRationalNumbers() {
Rational r1 = new Rational (16, 20);
Rational r2 = new Rational (20, 25);
assertEquals(r1, r2);

}
@Test void
testTwoEqualRationalNumbersDifferentSigns() {

Rational r1 = new Rational (-16, 20);
Rational r2 = new Rational (20, -25);
assertEquals(r1, r2);

}
@Test void testTwoIdenticalRationalNumbers()
{

Rational r1 = new Rational (16, 20);
Rational r2 = new Rational (16, 20);
assertEquals(r1, r2);

}
@Test void testTwoUnequalRationalNumbers() {

Rational r1 = new Rational (16, 20);
Rational r2 = new Rational (6, 10);
assertNotEquals(r1, r2);

}

37
CS165: Data Structures and Algorithms – Spring Semester 2020

White Box Testing

! Goal is to “cover” the code to gain confidence and
detect defects.

! Statement Coverage (most common)
– Requires all statements to be executed

! Branch Coverage
– Require decisions evaluate to true and false at least once
– Implies statement coverage

CS165: Data Structures and Algorithms – Spring Semester 2020 38

Doing white box testing on gcd

! Often parts of the implementation are not
executed by the test cases you have written
using blackbox strategies

! Run Eclipse coverage tool (EclEmma) using
the same JUnit test cases as before

! What is not covered? Suggest test inputs to
cover those statements and branches

39CS165: Data Structures and Algorithms – Spring Semester 2020

Code Coverage

CS165: Data Structures and Algorithms – Spring Semester 2020 40

Green = executed, Yellow = partial branch, Red = not executed

Software Debugging
! Possible methods for debugging:

– Examine code by hand
– Look at stack trace if program crashed with an

exception to find out where the last method call
happened.

– Use Print statements to show intermediate values
– Use built-in debugger in eclipse

CS165: Data Structures and Algorithms – Spring Semester 2020 41

Print Debugging

CS165: Data Structures and Algorithms – Spring Semester 2020 42

Debugging a faulty program

! Use the Data.java file in the debugging package.
! The bubblesort method in the Data.java file has

a fault but the programmer doesn’t know that.
! Some tests pass but others fail.
! Let’s debug the failing tests.
! Set a debug configuration in eclipse.
! Put a breakpoint at the bubblesort declaration.

43CS165: Data Structures and Algorithms – Spring Semester 2020

Debugging in Eclipse

CS165: Data Structures and Algorithms – Spring Semester 2020 44

State of variables

Breakpoint

Line getting executed

