Chapter 18 Recursion

Java Programming Colorado State University

Original slides by Daniel Liang Modified slides by Wim Bohm

Motivations

A directory is a set of files, some of which are directories.

This is an example of a recursive definition.

Motivations

An H-tree is an H shaped circuit with H shaped circuits at its end points. Another recursive definition.

Motivations

An H-tree is an H shaped circuit with H shaped circuits at its end points. Another recursive definition.
H-trees, depicted below, are used in chip design as a clock distribution network for routing timing signals to all parts of a chip with equal propagation delays.

Fractals

A fractal is a geometrical figure just like triangles, circles, and rectangles, but fractals can be divided into parts, each of which is a reduced-size copy of the whole.

Example: the Sierpinski triangle, named after a famous Polish mathematician.

Sierpinski Triangle

1. It begins with an equilateral triangle, which is considered to be the Sierpinski fractal of order (or level) 0 .
2. Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle of order 1.
3. Leave the center triangle intact. Connect the midpoints of the sides of the three other triangles to create a Sierpinski order 2.
4. You can repeat the same process recursively to create a Sierpinski triangle order $3,4, \ldots$, and so on.

Fractals - the Koch curve

Recursion

- A recursive definition

left-hand-side $=$ right-hand-side

that uses the left-hand-side in the right-hand-side

+ e.g.,
a list $=$ either empty or an element followed by a list
This definition has a non recursive base case and a recursive general case.

Factorial

```
//recursive method
public int factorial(int n) {
    if (n == 0) // Base case
        return 1;
    else
}
```


//recursive definition

```
\(\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)\) !
\(0!=1\)
```

 return \(n\) * factorial(n - 1); // Recursive call

Trace Recursive factorial

Trace Recursive factorial

Executes factorial(3)

Trace Recursive factorial

factorial(4) Stack Trace

Other Recursive definitions

$$
\begin{aligned}
& \mathrm{f}(0)=0 \\
& \mathrm{f}(\mathrm{n})=\mathrm{n}+\mathrm{f}(\mathrm{n}-1) ; \\
& \mathrm{g}(0)=1 \\
& \mathrm{~g}(\mathrm{n})=\mathrm{g}(\mathrm{n}-1)+2 \\
& \mathrm{~h}(0)=1 \\
& \mathrm{~h}(\mathrm{n})=3 * \mathrm{~h}(\mathrm{n}-1)
\end{aligned}
$$

Characteristics of Recursion

All recursive methods have the following characteristics:

- One or more non-recursive base cases are used to stop the recursion.
- Recursive calls that reduce the original problem, bringing it increasingly closer to a base case until it becomes a base case.

To solve a problem using recursion, you break it into smaller subproblems, similar to the original problem.

DoSomething(list) \{
Do(head); DoSomething(head.next);
\}

Reaching the base case

- You must convince yourself that the non-recursive base case is eventually reached. What about:

```
public void doIt(int n){
    if(n != 0){
    bla;
    doIt(n-2);
    }
}
```


Think Recursively

Many problems can be solved using recursion. For example, the palindrome problem:
public boolean isPalindrome(String s) \{
if (s.length() <=1) // Base case
return true;
else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case return false;
else // Recursive general case return isPalindrome(s.substring(1, s.length() - 1));
\}

Recursive Helper Methods

The preceding recursive isPalindrome method creates a new string for every recursive call. To avoid creating new strings, we write explicit string indices, using a helper method:

```
public static boolean isPalindrome(String s) {
    return isPalindrome(s, 0, s.length() - 1);
}
public static boolean isPalindrome(String s, int low, int high) {
    if (high <= low) // Base case
        return true;
    else if (s.charAt(low) != s.charAt(high)) // Base case
        return false;
    else
        return isPalindrome(s, low + 1, high - 1);
```


Recursive Binary Search

1. Case 1: If the key is less than the middle element, recursively search the key in the first half of the array.
2. Case 2: If the key is equal to the middle element, the search ends with a match.
3. Case 3: If the key is greater than the middle element, recursively search the key in the second half of the array.
[^0]
Fibonacci's Rabbits

- Suppose a newly-born pair of rabbits, one male, one female, are put on an island.
- A pair of rabbits doesn't breed until 2 months old.
- Thereafter each pair produces another pair each month
- Rabbits never die.
- How many pairs will there be after n months?

Fibonacci Numbers

$$
\begin{aligned}
& \text { Fibonacci series: } 0112235813213455 \text { 89... } \\
& \text { indices: } 0 \begin{array}{llllllllllll}
& 1 & 2 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array}
\end{aligned}
$$

$\mathrm{fib}(0)=0$;
fib $(1)=1$;
fib $($ index $)=$ fib $($ index -1$)+$ fib $($ index -2$) ;$ index $>=2$

$$
\begin{aligned}
\operatorname{fib}(3) & =\mathrm{fib}(2)+\mathrm{fib}(1) \\
& =(\mathrm{fib}(1)+\mathrm{fib}(0))+\mathrm{fib}(1) \\
& =(1+0)+1+1=2
\end{aligned}
$$

Fibonnaci Numbers, cont.

Characteristics of Recursion

All recursive methods have the following characteristics:

- One or more base cases (the simplest case) are used to stop recursion.
- Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

Break a problem into subproblems.
If a subproblem is the same as the original problem, but with a smaller size, solve the subproblem recursively

Exercise

- Let's write a method reverseLines (Scanner scan) that reads lines using the scanner and prints them in reverse order.
- Use recursion without using loops.
- Example input:

Expected output:
no?
fun
is
this

- What are the cases to consider?
- How can we solve a small part of the problem at a time?
- What is a file that is very easy to reverse?

Reversal pseudocode

\leftrightarrow Reversing the lines of a file:

- Read a line L from the file.
- Print the rest of the lines in reverse order.
- Print the line L.
- If only we had a way to reverse the rest of the lines of the file....

Reversal solution

public void reverseLines (Scanner input) \{ if (input.hasNextLine()) \{
// recursive case
String line $=$ input. nextLine(); reverseLines (input);
System.out.println(line);
\}
\}

- Where is the base case?

Spock's dilemma

\leftrightarrow Entering a star system for the first time, Spock has a limited time before he has to go pick up Kirk.

- There are n planets
- Spock has time to visit $\mathrm{k}(<=\mathrm{n})$ planets
\downarrow How many different combinations of planets can Spock visit?

Spock pseudo code

Spock can only visit k out of n planets, so he must choose k out of $\mathrm{n}(0<=\mathrm{k}<=\mathrm{n})$
if ($\mathrm{n}==\mathrm{k} \| \mathrm{k}==0$) there is only one way else // $\mathrm{n}>\mathrm{k}$ and $\mathrm{k}>0$
take planet n . Spock can either visit n and
then he must choose k -1 more out of $\mathrm{n}-1$ or not,
then he must choose k out of $\mathrm{n}-1$

Spock's dilemma

public long combRec(long n, long k) $\{$ if ($n==k$ || $k==0$) // only one way return 1;
else
return combRec(n-1, k-1) // take n
$+$
combRec(n-1,k); // or don't

parkingLot (int n)

- parkingLot computes in how many different ways a parking lot of size n can be filled with two kinds of vehicles:
- Civics, size 1
- Explorers, size 2
- Here are some examples:
- A parking lot of size 1 can have 1 Civic (C), so the answer is 1 .
- A parking lot of size 2 can have 1 Explorer (E) or two Civics (CC), so the answer is 2 .

parkingLot (int n)

public static long parkingLot (int n) \{
if ($\mathrm{n}==1$) return 1 ; // a Civic
else if $(\mathrm{n}==2$) return 2; // an Explorer or two Civics else return
parkingLot(n-2) // Explorer in last position
$+\quad / /$ or
parkingLot(n-1); // Civic in last position

Memoization

- Problems like Fibonacci and parkingLot create "bushy" trees.
- These trees are full of repeated calls
- We can achieve tremendous speedup by saving intermediate results.
Look back at the Fibonacci call tree:
fib(n) calls fib($\mathrm{n}-1$) and fib($\mathrm{n}-2$)
fib(n) calls fib($\mathrm{n}-2$) and fib($\mathrm{n}-3$)
So fib(n) calls fib(n-2) twice (1 direct, 1 indirect)

Fast Fib

private long[] memo = new long[100];

 public long fastFib(int n) $\{$if($\mathrm{n}<2$) return n ; if (memo[n]==0) // not computed yet // so compute and memoize it memo[n] = fastFib(n-1) + fastFib(n-2); return memo[n];

Fast Spock

```
public static long spock(int n, int k, long [][] A)
if (A[n][k]== 0)
    {
        if (k == 0 || n == k) // pick nobody or pick everybody
        A[n][k]=1;
        else
        A[n][k] = spock(n-1, k,A) // pick a subset without n
        + spock(n-1, k-1,A); // pick a subset with n
    }
    return A[n][k];
}
```


Exercise

- Write fast parkingLot (see parkingLot on slide 39)

Towers of Hanoi

- There are n different sized disks labeled $1,2,3, \ldots$., n, and three towers labeled A, B, and C.
- All the disks are initially placed on tower A. The goal is to move all disks to tower B.
- No disk can be on top of a smaller disk at any time.
- Only one disk can be moved at a time, and it must be the top disk on the source (and destination) tower.

Towers of Hanoi, cont.

Step 4: Move disk 3 from A to B

Solution to Towers of Hanoi

The Tower of Hanoi problem can be decomposed into three subproblems

Solution to Towers of Hanoi

- Move the top $\underline{\mathrm{n}-1}$ disks from A to C using tower B
- Move disk \underline{n} from A to B
- Move $\underline{\mathrm{n}-1}$ disks from C to B using tower A

TowerOfHanoi Run

Exercise 18.3 GCD

$\operatorname{gcd}(2,3)=1$
$\operatorname{gcd}(2,10)=2$
$\operatorname{gcd}(25,35)=5$
$\operatorname{gcd}(205,301)=5$
$\operatorname{gcd}(m, n)$
Approach 1: Brute-force, start from $\min (n, m)$ down to 1 , to check if the number is common divisor for both m and n, if so, it is the greatest common divisor.
Approach 2: Euclid's algorithm
Approach 3: Recursive Euclid

Euclid's algorithm

E.g., $\operatorname{gcd}(287,91)$

- $287=(287 / 91) * 91+287 \% 91=91 * 3+14$ any divisor of 287 and 91 is a divisor of 14 : $287-91 * 3=14$ also any divisor of 91 and 14 must be a divisor of 287: $287=91 * 3+14$
- Hence $\operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$

Now compute $\operatorname{gcd}(287,91)$ using this method.

Euclid's algorithm

// Get absolute value of m and n; tI = Math.abs(m) ; tD = Math.abs(n);
// r is the remainder of $t 1$ divided by $t 2$;
r = tl \% th;
while (r ! $=0$) \{
t 1 = t 2 ;
th = r;
r = ti \% th;
\}
// When r is $0, t 2$ is the greatest common // divisor between ty and t2 return th;

Recursive Euclid

$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\mathrm{n}$ if $\mathrm{m} \% \mathrm{n}=0$; $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\operatorname{gcd}(\mathrm{n}, \mathrm{m} \% \mathrm{n})$; otherwise;

Exercise: write this as a java method.

Using Recursion

Recursion is good for solving problems that are inherently recursive, and not easily solved iteratively

Spock, Parkinglot, Hanoi
This usually means: more than linear recursive
Multiple recursive calls
All the above have two recursive calls

Linear recursion can be easily replaced by iteration palindrome, reverse, factorial, binary search, gcd

[^0]: RecursiveBinarySearch

