
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 18 Recursion

Java Programming
Colorado State University

Original slides by Daniel Liang
Modified slides by Wim Bohm

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Motivations
A directory is a set of files, some of which are
directories.
This is an example of a recursive definition.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Motivations
An H-tree is an H shaped circuit with H shaped circuits at
its end points. Another recursive definition.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Motivations
An H-tree is an H shaped circuit with H shaped circuits at
its end points. Another recursive definition.
H-trees, depicted below, are used in chip design as a clock
distribution network for routing timing signals to all parts
of a chip with equal propagation delays.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 5

Fractals
A fractal is a geometrical figure just like
triangles, circles, and rectangles, but fractals
can be divided into parts, each of which is a
reduced-size copy of the whole.

Example: the Sierpinski triangle, named after
a famous Polish mathematician.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Sierpinski Triangle
1. It begins with an equilateral triangle, which is considered to be

the Sierpinski fractal of order (or level) 0.
2. Connect the midpoints of the sides of the triangle of order 0 to

create a Sierpinski triangle of order 1.
3. Leave the center triangle intact. Connect the midpoints of the

sides of the three other triangles to create a Sierpinski order 2.
4. You can repeat the same process recursively to create a

Sierpinski triangle order 3, 4, ..., and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Fractals – the Koch curve

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Recursion
✦ A recursive definition

left-hand-side = right-hand-side
that uses the left-hand-side in the right-hand-side

✦ e.g.,
a list = either empty

or an element followed by a list
This definition has a non recursive base case and a
recursive general case.

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

Factorial
//recursive method
public int factorial(int n) {
if (n == 0) // Base case
return 1;

else
return n * factorial(n - 1); // Recursive call

}

//recursive definition
n! = n * (n-1)!
0! = 1

RunComputeFactorial

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

Trace Recursive factorial
animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

11

Trace Recursive factorial
animation

Executes factorial(3)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

12

Trace Recursive factorial
animation

Executes factorial(2)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

13

Trace Recursive factorial
animation

Executes factorial(1)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

14

Trace Recursive factorial
animation

Executes factorial(0)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

15

Trace Recursive factorial
animation

returns 1

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

16

Trace Recursive factorial
animation

returns factorial(0)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

17

Trace Recursive factorial
animation

returns factorial(1)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

18

Trace Recursive factorial
animation

returns factorial(2)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

19

Trace Recursive factorial
animation

returns factorial(3)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

20

Trace Recursive factorial
animation

returns factorial(4)

Main method

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5
Stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 21

factorial(4) Stack Trace

Space Required
for factorial(4)

1 Space Required
for factorial(4)

2 Space Required
for factorial(3)

Space Required
for factorial(4)

3

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

4

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

5

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Space Required
for factorial(4)

6

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(4)

7

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

8 Space Required
for factorial(3)

Space Required
for factorial(4)

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 22

Other Recursive definitions
f(0) = 0;

f(n) = n + f(n-1);

g(0)=1;

g(n)=g(n-1)+2

h(0)=1;

h(n)=3*h(n-1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 23

Characteristics of Recursion
All recursive methods have the following characteristics:

– One or more non-recursive base cases are used to stop the
recursion.

– Recursive calls that reduce the original problem, bringing it
increasingly closer to a base case until it becomes a base case.

To solve a problem using recursion, you break it into
smaller subproblems, similar to the original problem.

DoSomething(list){
Do(head); DoSomething(head.next);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Reaching the base case
✦ You must convince yourself that the non-recursive base

case is eventually reached. What about:

public void doIt(int n){
if(n != 0){
bla;
doIt(n-2);

}
}

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 25

Think Recursively
Many problems can be solved using recursion.
For example, the palindrome problem:

public boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;

else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
return false;

else // Recursive general case
return isPalindrome(s.substring(1, s.length() - 1));

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 26

Recursive Helper Methods
The preceding recursive isPalindrome method creates a
new string for every recursive call. To avoid creating new
strings, we write explicit string indices, using a helper
method:

public static boolean isPalindrome(String s) {
return isPalindrome(s, 0, s.length() - 1);

}
public static boolean isPalindrome(String s, int low, int high) {

if (high <= low) // Base case
return true;

else if (s.charAt(low) != s.charAt(high)) // Base case
return false;

else
return isPalindrome(s, low + 1, high - 1);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 27

Recursive Binary Search
1. Case 1: If the key is less than the middle element,

recursively search the key in the first half of the array.
2. Case 2: If the key is equal to the middle element, the

search ends with a match.
3. Case 3: If the key is greater than the middle element,

recursively search the key in the second half of the
array.

RecursiveBinarySearch

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Fibonacci’s Rabbits
✦ Suppose a newly-born pair of

rabbits, one male, one female, are
put on an island.
– A pair of rabbits doesn’t breed until 2

months old.
– Thereafter each pair produces another pair

each month
– Rabbits never die.

✦ How many pairs will there be after
n months?

image from: http://www.jimloy.com/algebra/fibo.htm

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 29

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1)

= (fib(1) + fib(0)) + fib(1)

= (1 + 0) + 1 + 1 = 2 RunComputeFibonacci

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 30

Fibonnaci Numbers, cont.

return fib(3) + fib(2)

return fib(2) + fib(1)

return fib(1) + fib(0)

return 1

return fib(1) + fib(0)

return 0

return 1

return 1 return 0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0)

6: return fib(0)

8: call fib(1)

9: return fib(1)

10: return fib(3)
11: call fib(2)

16: return fib(2)

12: call fib(1) 13: return fib(1)
14: return fib(0)

15: return fib(0)

fib(4)
0: call fib(4) 17: return fib(4)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 31

Characteristics of Recursion
All recursive methods have the following characteristics:

– One or more base cases (the simplest case) are used to stop
recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

Break a problem into subproblems.
If a subproblem is the same as the original problem, but
with a smaller size, solve the subproblem recursively

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Exercise
✦ Let’s write a method reverseLines(Scanner scan) that

reads lines using the scanner and prints them in reverse order.
– Use recursion without using loops.

– Example input: Expected output:

this no?
is fun
fun is
no? this

– What are the cases to consider?
◆ How can we solve a small part of the problem at a time?
◆ What is a file that is very easy to reverse?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Reversal pseudocode

✦ Reversing the lines of a file:
– Read a line L from the file.
– Print the rest of the lines in reverse order.
– Print the line L.

✦ If only we had a way to reverse the rest of the lines of the
file....

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Reversal solution
public void reverseLines(Scanner input) {

if (input.hasNextLine()) {
// recursive case
String line = input.nextLine();
reverseLines(input);
System.out.println(line);

}
}

– Where is the base case?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Spock’s dilemma

✦ Entering a star system for the first time,
Spock has a limited time before he has to go
pick up Kirk.
– There are n planets
– Spock has time to visit k (<= n) planets

✦ How many different combinations of
planets can Spock visit?

35

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Spock pseudo code
Spock can only visit k out of n planets, so he
must choose k out of n (0 <= k <= n)
if (n==k || k==0) there is only one way
else // n>k and k>0

take planet n. Spock can either visit n and
then he must choose k-1 more out of n-1
or not,

then he must choose k out of n-1

36

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Spock’s dilemma

public long combRec(long n, long k){
if (n==k || k==0) // only one way

return 1;
else

return combRec(n-1, k-1) // take n
+
combRec(n-1, k); // or don’t

37

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

parkingLot (int n)
✦ parkingLot computes in how many different ways a parking lot of size

n can be filled with two kinds of vehicles:
– Civics, size 1
– Explorers, size 2

✦ Here are some examples:
– A parking lot of size 1 can have 1 Civic (C), so the answer is 1.
– A parking lot of size 2 can have 1 Explorer (E) or two Civics (CC),

so the answer is 2.

38

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

parkingLot (int n)

public static long parkingLot (int n) {
if (n == 1) return 1; // a Civic
else if (n == 2) return 2; // an Explorer or two Civics

else return
parkingLot(n-2) // Explorer in last position
+ // or
parkingLot(n-1); // Civic in last position

}

39

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Memoization
✦ Problems like Fibonacci and parkingLot

create “bushy” trees.
✦ These trees are full of repeated calls
✦ We can achieve tremendous speedup by

saving intermediate results.
Look back at the Fibonacci call tree:

fib(n) calls fib(n-1) and fib(n-2)
fib(n) calls fib(n-2) and fib(n-3)

So fib(n) calls fib(n-2) twice (1 direct, 1 indirect)

40

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Fast Fib
private long[] memo = new long[100];
public long fastFib(int n){

if(n<2) return n;
if (memo[n]==0) // not computed yet
// so compute and memoize it
memo[n] = fastFib(n-1) + fastFib(n-2);

return memo[n];
}

41

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Fast Spock
public static long spock(int n, int k, long [][] A)

if (A[n][k] == 0)
{
if (k == 0 || n == k) // pick nobody or pick everybody
A[n][k] = 1;

else
A[n][k] = spock(n-1, k, A) // pick a subset without n

+ spock(n-1, k-1, A); // pick a subset with n
}
return A[n][k];

}

42

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Exercise

✦ Write fast parkingLot
(see parkingLot on slide 39)

43

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 44

Towers of Hanoi

§ There are n different sized disks labeled 1, 2, 3, . .
., n, and three towers labeled A, B, and C.

§ All the disks are initially placed on tower A. The
goal is to move all disks to tower B.

§ No disk can be on top of a smaller disk at any time.
§ Only one disk can be moved at a time, and it must

be the top disk on the source (and destination)
tower.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 45

Towers of Hanoi, cont.

Now try
it for
4 disks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 46

Solution to Towers of Hanoi
The Tower of Hanoi problem can be decomposed into three
subproblems.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 47

Solution to Towers of Hanoi

q Move the top n - 1 disks from A to C using tower B

q Move disk n from A to B

q Move n - 1 disks from C to B using tower A

RunTowerOfHanoi

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 48

Exercise 18.3 GCD
gcd(2, 3) = 1
gcd(2, 10) = 2
gcd(25, 35) = 5
gcd(205, 301) = 5
gcd(m, n)
Approach 1: Brute-force, start from min(n, m) down to 1,

to check if the number is common divisor for both m
and n, if so, it is the greatest common divisor.

Approach 2: Euclid’s algorithm
Approach 3: Recursive Euclid

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Euclid’s algorithm
E.g., gcd(287, 91)
✦ 287 = (287/91)*91 + 287%91= 91*3 + 14

any divisor of 287 and 91 is a divisor of 14:
287-91*3 = 14
also
any divisor of 91 and 14 must be a divisor of 287:
287 = 91*3 + 14

✦ Hence gcd(287,91) = gcd(91,14)
Now compute gcd(287,91) using this method.

49

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 50

Euclid’s algorithm
// Get absolute value of m and n;
t1 = Math.abs(m); t2 = Math.abs(n);
// r is the remainder of t1 divided by t2;
r = t1 % t2;
while (r != 0) {
t1 = t2;
t2 = r;
r = t1 % t2;

}

// When r is 0, t2 is the greatest common
// divisor between t1 and t2
return t2;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 51

Recursive Euclid
gcd(m, n) = n if m % n = 0;
gcd(m, n) = gcd(n, m % n); otherwise;

Exercise: write this as a java method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 52

Using Recursion

Recursion is good for solving problems that are inherently
recursive, and not easily solved iteratively

Spock, Parkinglot, Hanoi
This usually means: more than linear recursive

Multiple recursive calls
All the above have two recursive calls

Linear recursion can be easily replaced by iteration
palindrome, reverse, factorial, binary search, gcd

