
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 11: Inheritance and
Polymorphism

CS2: Data Structures and Algorithms
Colorado State University

Original slides by Daniel Liang
Modified slides by Wim Bohm and Sudipto Ghosh

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Basic Component: Class
A Class is a software bundle of related states
(properties, or variables) and behaviors
(methods)

✦ State is stored in instance variables
✦ Method exposes behavior

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Basic Components
✦ Class: Blueprint from which objects are

created
– Multiple Object Instances created from a class

✦ Interface: A Contract between classes and the
outside world.
– When a class implements an interface, it promises

to provide the behavior published by that
interface.

✦ Package: a namespace (directory) for
organizing classes and interfaces

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Data Encapsulation

✦ An ability of an object to be a container (or
capsule) for related properties and methods.
– Preventing unexpected change or reuse of the

content
✦ Data hiding

– Object can shield variables from external access.
◆ Private variables
◆ Public accessor and mutator methods, with potentially

limited capacities, e.g. only read access, or write only
valid data.

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Data Encapsulation
public class Clock{

private long time, alarm_time;

public void setTime(long time){
this.time = time;

}
public void setAlarmTime(long time){

this.alarm_time = time;
}
public long getTime(){return time}
public long getAlarmTime(){return alarm_time}
public void noticeAlarm(){ … //ring alarm }
}

}

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Inheritance

✦ The ability of a class to derive properties
and behaviors from a previously defined
class.

✦ Relationship among classes.
✦ Enables reuse of software components

– e.g., java.lang.Object()
– toString(), equals(), etc.

6

CS200 - Advanced OO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Example: Inheritance

Clock

Sports
Watch

Radio
Clock

7

CS200 - Advanced OO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Example: Inheritance – cont.
8

Public class SportsWatch extends Clock {
private long start_time;
private long end_time;

public long getDuration()
{

return end_time - start_time;
}

}

CS200 - Advanced OO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Overriding Methods
9

public class RadioClock extends Clock
{
@override
public void noticeAlarm(){

ring alarm
turn_on_the_Radio

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 10

Another Example
Suppose you want to define classes to model
circles, rectangles, and triangles. These classes
have many common features.
What is the best way to design these classes so to
avoid redundancy?
The answer is to use inheritance: creating a
hierarchy of classes, where common features are
shared in higher level classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 11

Superclasses and Subclasses
 GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()
+GeometricObject(color: String,

filled: boolean)
+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.
Creates a GeometricObject with the specified color and filled

values.
Returns the color.
Sets a new color.
Returns the filled property.
Sets a new filled property.
Returns the dateCreated.
Returns a string representation of this object.

Circle
-radius: double

+Circle()
+Circle(radius: double)
+Circle(radius: double, color: String,

filled: boolean)
+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

Rectangle
-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)
+Rectangle(width: double, height: double

color: String, filled: boolean)
+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double

Run

GeometricObject

CircleFromSimpleGeometricObject

RectangleFromSimpleGeometricObject

TestCircleRectangle

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Definition: Inheritance

✦ Inheritance:
Lower level classes get (access to)
certain methods and data from higher level
classes

✦ Data and methods are now defined in one
place (the super class) and used in this
and lower (sub) classes

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Are superclass’s Constructor
Inherited?

No. They are not inherited.

They are invoked explicitly or implicitly.

Explicitly using the super keyword.
A constructor is used to construct an instance of a class. Unlike
data and methods, a superclass's constructors are not inherited in
the subclass. They can only be invoked from the subclasses'
constructors, using the keyword super.

If the keyword super is not explicitly used, the superclass's no-arg
constructor is automatically invoked.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Superclass’s Constructor Is Always Invoked
A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement
in the constructor. For example,

 public A(double d) {
 // some statements
}

is equivalent to

public A(double d) {
 super();
 // some statements
}

 public A() {
}

is equivalent to

public A() {
 super();
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 15

Using the Keyword super

✦ To call a superclass constructor

✦ To call a superclass method

The keyword super refers to the superclass
of the class in which super appears. This
keyword can be used in two ways:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

CAUTION

You must use the keyword super to call the
superclass constructor, instead of the
superclass constructor’s name.

Java requires that the constructor call super
appear first in the constructor.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

Constructor Chaining

public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is known as constructor chaining.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

1. Start from the
main method

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

2. Invoke Faculty
constructor

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

3. Invoke Employee’s no-
arg constructor

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

4. Invoke Employee(String)
constructor

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

5. Invoke Person() constructor

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

6. Execute println

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 24

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

7. Execute println

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 25

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

8. Execute println

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

}

public Faculty() {
System.out.println("(4) Faculty's no-arg constructor is invoked");

}
}

class Employee extends Person {
public Employee() {
this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {
System.out.println(s);

}
}

class Person {
public Person() {
System.out.println("(1) Person's no-arg constructor is invoked");

}
}

9. Execute println

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Example on the Impact of a Superclass
without no-arg Constructor

public class Apple extends Fruit {
}

class Fruit {
public Fruit(String name) {
System.out.println("Fruit's constructor is invoked");

}
}

Error: Fruit has no no-arg constructor, so Apple fails:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

Defining a Subclass
A subclass inherits methods and data from a
superclass. You can also:

✦ Add new properties

✦ Add new methods

✦ Override the methods of the superclass

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Overriding vs. Overloading

Overloading occurs when two or more
methods in the same class have the same
method name but different parameters.
Overriding means having two methods with
the same method name and parameters (i.e.,
method signature). One of the methods is in
the parent class and the other is in the child
class.

29

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

Overriding vs. Overloading
 public class Test {
 publ ic stat ic void main(String[] args) {
 A a = new A();
 a. p(10);
 a. p(10.0) ;
 }
}

class B {
 publ ic void p(doub le i) {
 Sy stem.ou t.print ln(i * 2);
 }
}

class A exten ds B {
 // T his met hod ove rrides the me thod in B
 publ ic void p(doub le i) {
 Sy stem.ou t.print ln(i);
 }
}

public class T est {
 publi c stati c void main(St ring[] args) {
 A a = new A();
 a.p (10);
 a.p (10.0);
 }
}

class B {
 publi c void p(doubl e i) {
 Sys tem.out .printl n(i * 2);
 }
}

class A extend s B {
 // Th is meth od over loads t he meth od in B
 publi c void p(int i) {
 Sys tem.out .printl n(i);
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Overriding Methods in the Superclass
A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a method
defined in the superclass. This is referred to as method overriding.

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */
public String toString() {

return super.toString() + "\nradius is " + radius;
}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

NOTE
An instance method can be overridden only
if it is accessible.

Thus a private method cannot be overridden,
because it is not accessible outside its own
class.

If a method defined in a subclass is private
in its superclass, the two methods are
completely unrelated.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

The Object Class and Its Methods
Every class in Java is descended from the
java.lang.Object class. If no inheritance is
specified when a class is defined, the
superclass of the class is Object.

 public class Circle {
 ...
}

Equivalent
public class Circle extends Object {
 ...
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

The toString() method in Object
The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and a number representing this object.

Loan loan = new Loan();
System.out.println(loan.toString());

The code displays something like Loan@15037e5 . This
message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Polymorphism
Polymorphism means that a variable of a supertype
can refer to a subtype object.

A class defines a type. A type defined by a
subclass is called a subtype, and a type defined by
its superclass is called a supertype. Therefore, you
can say that Circle is a subtype of
GeometricObject and GeometricObject is a
supertype for Circle.

RunPolymorphismDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

Dynamic Binding
Object o is an instance of class C1
C1 is a subclass of C2, C2 is a subclass of C3, ...etc.,
Cn is the Object class.
If a method in o invokes a method p, the JVM
searches the implementation for the method p in C1,
C2, ..., Cn-1 and Cn, in this order, until it is found, and
that method is invoked.

Cn Cn-1 C2 C1

Object
Since o is an instance of C1, o is also an
instance of C2, C3, …, Cn-1, and Cn

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

Method Matching vs. Binding
Matching a method signature and binding a method
implementation are two issues. The compiler finds a
matching method according to parameter type, number
of parameters, and order of the parameters at
compilation time (overloading)

A method may be implemented in several subclasses.
The Java Virtual Machine dynamically binds the
implementation of the method at runtime (overriding)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 38

Casting Objects
Casting can be used to convert an object of one class type to another
within an inheritance hierarchy. In the code:

Object o = new Student();
works, while
Student b = o;

Does not, because a Student object is always an instance of Object,
but Object is not in general an instance of Student. For instance,
students have grades, but not all objects. If we know that o IS a
Student, we can cast o:

Student b = (Student)o;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

Casting from
Superclass to Subclass

Explicit casting must be used when casting an
object from a superclass to a subclass. This type
of casting may not always succeed.

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

The instanceof Operator
Use the instanceof operator to test whether an object is an
instance of a class:

Object myObject = new Circle();
... // Some lines of code
/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());
...

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

Example: Demonstrating
Polymorphism and Casting

This example creates two geometric objects: a
circle, and a rectangle, invokes the
displayGeometricObject method to display the
objects. The displayGeometricObject displays
the area and diameter if the object is a circle, and
displays area if the object is a rectangle.

RunCastingDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

The equals Method
The equals() method compares the
contents of two objects. The default implementation of the
equals method in the Object class is as follows:

public boolean equals(Object obj) {
return this == obj;

}

For example, the
equals method is
overridden in
the Circle
class.

public boolean equals(Object o) {
if (o instanceof Circle) {

return radius == ((Circle)o).radius;
}
else

return false;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

NOTE
The == comparison operator is used for comparing
two primitive data type values or for determining
whether two objects have the same references.

The equals method is intended to test whether two
objects have the same contents, provided that the
equals method is overriden in the defining class of the
objects.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

The protected Modifier
✦ The protected modifier can be applied on data

and methods in a class. A protected data or a
protected method in a public class can be accessed
by any class in the same package or its subclasses,
even if the subclasses are in a different package.

✦ private, default, protected, public

private, none (if no modifier is used), protected, public

Visibility increases

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Accessibility Summary

Modifier
on members
in a class

Accessed
from the
same class

Accessed
from the
same package

Accessed
from a
subclass

Accessed
from a different
package

public

protected -

default - -

private - - -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 46

Visibility Modifiers

public class C1 {
 public int x;
 protected int y;
 int z;
 private int u;

 protected void m() {
 }
}

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;
 can access o.z;
 cannot access o.u;

 can invoke o.m();
}

public class C3
 extends C1 {
 can access x;
 can access y;
 can access z;
 cannot access u;

 can invoke m();
}

package p1;

public class C4
 extends C1 {
 can access x;
 can access y;
 cannot access z;
 cannot access u;

 can invoke m();
}

package p2;

public class C5 {
 C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;
 cannot access o.u;

 cannot invoke o.m();
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Modifier hierarchy

We cannot reduce the visibility / accessibility
of a method.

For example, if a method is defined as public
in the superclass, it must be defined as public
in the subclass.

47

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 48

NOTE

The modifiers are used on classes and
class members (data and methods), except
that the final modifier can also be used on
local variables in a method. A final local
variable is a constant inside a method.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 49

The final Modifier
✦ The final class cannot be extended:

final class Math {
...

}

✦ The final variable is a constant:
final static double PI = 3.14159;

✦ The final method cannot be
overridden by its subclasses.

