
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 20 Lists, Stacks

CS165
Colorado State University

Original slides by Daniel Liang
Modified slides by

Wim Bohm, Sudipto Ghosh

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

What is a Data Structure?

!A collection of data elements
!Stored in a structured fashion
!With operations that access & manipulate

elements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Java Collections Framework

!Collection is a java interface
– java.util.Collection

!Defines abstract methods for objects that
contain other objects (elements)
– add(E e)
– remove(E e)
– contains(E e)
– toArray(E e)

These are
examples, not
an exhaustive
list

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Three Types of Collections

§ Lists – Store elements in sequential order
§ Ordered Collection

§ Sets – lists allow duplicates, sets do not
§ Unordered Collection

§ Maps – data structure based on <key, value>
pairs
§ Holds two objects per entry
§ May contain duplicate values
§ Keys are always unique

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 5

The List Interface

!Elements stored in sequential order
!Programs can specify where an element is

stored.
!Programs can access elements by index.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Array vs ArrayList vs LinkedList
• Array

• Allows element update, but does not support
insertion or deletion of elements

• But the most efficient if insert/delete not needed
• ArrayList class and the LinkedList class

• Concrete implementations of the List interface.
• Usage depends on your specific needs (later)

• ArrayList – Fast random access through indices
• LinkedList – Fast insertion and deletion of

elements at specific locations

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.
Creates an array list from an existing collection.
Creates an empty list with the specified initial capacity.
Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()
+ArrayList(c: Collection<? extends E>)
+ArrayList(initialCapacity: int)
+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

interface List<E>
extends Collection<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.
Creates a linked list from an existing collection.
Adds the object to the head of this list.
Adds the object to the tail of this list.
Returns the first element from this list.
Returns the last element from this list.
Returns and removes the first element from this list.
Returns and removes the last element from this list.

+LinkedList()
+LinkedList(c: Collection<? extends E>)
+addFirst(o: E): void
+addLast(o: E): void
+getFirst(): E
+getLast(): E
+removeFirst(): E
+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Linked List
! A structure containing (at least) the size of the

list (# nodes in it) and a head: a reference to the
first node. (LinkedList object)

! A sequence of nodes, first referring to second
referring to third etc. (Node objects)

9

item next
42

item next
-3

item next
17

item next
9 null

size = 4
head

LinkedList

Node Node Node Node

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Linked List: constructor
public class LinkedList {

private Node head;
private int size;

public LinkedList() {
head = null;
size = 0;

}

// Code for add, remove, find, clear . .

}

head =

size = 0

LinkedList

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

public class Node {
private Object item;
private Node next;
public Node(Object item) {

this.item = item;
this.next = null;

}
public Node(Object item, Node next) {

this.item = item;
this.next = next;

}
public void setNext(Node nextNode) {

next = nextNode;
}
public Node getNext() {

return next;
}
public Object getItem() {

return item;
}
public void setItem(Object item){

this.item = item;
}

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Implementing add
! How do we add to a linked list at a given

index?

item next
42

item next
-3

item next
17

item next
9 null

size = 4
head

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Implementing add
! How do we add a node to a linked list at a given index?

Consider all the possible cases!
1. Index out of bounds
2. Insert at head
3. Insert in middle
4. Insert at end

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The add method
public void add(int index, Object item){

if (index<0 || index>size)
throw new IndexOutOfBoundsException(”out of bounds”);

if (index == 0) {
head = new Node(item, head);

}
else { // find predecessor of node

Node curr = head;
for (int i=0; i<index-1; i++){

curr = curr.getNext();
}
curr.setNext(new Node(item, curr.getNext()));

}
size++;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Implementing remove

– How do we remove a node?

– Cases:
! Index out of range
! At the head
! In the middle
! At the end

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Removing the first node

! Before removing element at index 0:

! After:

head =

size = 2

item next
-3

item next
20

head =

size = 3

item next
42

item next
-3

item next
20

element 0 element 1 element 2

element 0 element 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The remove method
public void remove(int index) {

if (index<0 || index >= size)
throw new IndexOutOfBoundsException

("List index out of bounds");
if (index == 0) {

// special case: removing first element
head = head.getNext();

} else {
// removing from elsewhere in the list
Node current = head;
for (int i = 0; i < index - 1; i++) {

current = current.getNext();
}
current.setNext(current.getNext().getNext());

}
size--;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Removing node from the middle
! Before removing element at index 1:

! After:

head =

size = 2

item next
42

item next
20

head =

size = 3

item next
42

item next
-3

item next
20

element 0 element 1 element 2

element 0 element 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

List with a single element

! Before: After:

– We must change head to null.
– Do we need a special case to handle this?

head =

size = 0

head =

size = 1

data next
20

element 0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The clear method

! How do you implement a method for
removing all the elements from a linked
list?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The clear method

public void clear() {
head = null;
size = 0;

}

q Where did all the memory go?
q Java’s garbage collection mechanism takes care of it!
q An object is eligible for garbage collection when no

references exist that refer to it

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Linear time-ordered structures
Stacks and Queues

! Two data structures that reflect a temporal relationship
– order of removal based on order of insertion

! We will consider:

– “last come, first serve: take from the top of the pile”
" last in first out - LIFO (stack)

– “first come, first serve”
" first in first out - FIFO (queue)

2
2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

2
3

Stacks or queues?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

What can we do with coin
dispenser?

! “push” a coin into the dispenser.

! “pop” a coin from the dispenser.

! “peek” at the coin on top, but don’t pop it.

! “isEmpty” check whether this dispenser is
empty or not.

2
4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Stacks

! Last In First Out (LIFO) structure
– A stack of dishes in a café
– A stack of quarters in a coin dispenser

! Add/Remove done from same end:
the top

5
4
3
2
1

top

2
5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Possible Stack Operations

! isEmpty(): determine whether stack is empty
! push(): add a new item to the stack

! pop(): remove the item added most recently

! peek(): retrieve, but don’t remove, the item
added most recently

! What would we call a collection of these ops?
– An Interface

2
6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Checking for balanced braces

! How can we use a stack to determine
whether the braces in a string are balanced?

abc{defg{ijk}{l{mn}}op}qr

abc{def}}{ghij{kl}m

Can you define balanced?
CS200 - Stacks

2
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Pseudocode

while (not at the end of the string){
if (the next character is a “{“){

aStack.push(“{“)
}
else if (the character is a “}”) {

if(aStack.isEmpty()) ERROR!!!
else aStack.pop()

}
}
if(!aStack.isEmpty()) ERROR!!!

2
8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

question

! Could you use a single int to do the same job?

! How?

2
9

Try it on
abc{defg{ijk}{l{mn}}op}qr {st{uvw}xyz}

abc{def}}{ghij{kl}m

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Expressions
! Types of Algebraic Expressions

– Prefix
– Postfix
– Infix

! Prefix and postfix are easier to parse.
No ambiguity. Infix requires extra rules:
precedence and associativity. What
are these?

! Postfix: operator applies to the operands
that immediately precede it.

! Examples:
1. - 5 * 4 3
2. 5 - 4 * 3
3. 5 4 3 * -

3
0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Infix Expressions

! Infix notation places each operator between
two operands for binary operators:

! This is the customary way we write math
formulas in programming languages.

! However, we need to specify an order of
evaluation in order to get the correct answer.

31

A	*	x	*	x	+	B	*	x	+	C;	//	quadratic	equation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

! The evaluation order you may have learned
in math class is named PEMDAS:

parentheses → exponents → multiplication,
division → addition, subtraction

Evaluation Order

32

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Associativity
Operators with same precedence:

* /
and

+ -

are evaluated left to right: 2-3-4 = (2-3)-4

33

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Infix Example
! How a Java infix expression is evaluated,

parentheses added to show association.

z	=	(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2;
z	=	(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2;	//	parentheses

z	=	(y	*	(6	/	x))	+	(w	*	4	/	v)	– 2;	//	multiplication	(L-R)
z	=	(y	*	(6	/	x))	+	((w	*	4)	/	v)	– 2;	//	multiplication	(L-R)

z	=	(y	*	(6	/	x))	+	((w	*	4)	/	v)	– 2;	//	division	(L-R)
z	=	((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	addition	(L-R)

z	=	((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	subtraction	(L-R)
z	= ((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	assignment

34

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Postfix Expressions

! Postfix notation places the operator after two
operands for binary operators:

! Also called reverse polish notation, just like a
vintage Hewlett-Packard calculator!

! No need for parentheses, because the
evaluation order is unambiguous.

35

A	*	x	*	x	+	B	*	x	+	C	//	infix	version

A	x	*	x	*	B	x	*	+	C	+	//	postfix	version

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Postfix Example
! Evaluating the same expression as postfix, must

search left to right for operators:

(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2	//	original	infix
y	6	x	/	*	w	4	*	v	/	+	2	- //	postfix	translation

(y (6	x	/)	*)	w	4	*	v	/	+	2	-
((y	(6	x	/)	*) w	4	*	v	/	+	2	-
(y	(6	x	/)	*) (w	4	*) v	/	+	2	-
(y	(6	x	/)	*) ((w	4	*)	v	/) +	2	–
((y	(6	x	/)	*)	((w	4	*)	v	/)	+)	2	-
(((y	(6	x	/)	*)	((w	4	*)	v	/)	+)	2	-)

36

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Prefix Expressions

! Prefix notation places the operator before
two operands for binary operators:

! Also called polish notation, because first
documented by polish mathematician.

! No need for parentheses, because the
evaluation order is unambiguous.

37

A	*	x	*	x	+	B	*	x	+	C									//	infix	version

+	+		*	*	A	x		x	*	B	x	C									//	prefix	version

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Infix, Postfix, Prefix Conversion

38

Infix Postfix Prefix Notes

A * B + C / D A B * C D / + + * A B / C D
multiply A and B,

divide C by D,
add the results

A * (B + C) / D A B C + * D / / * A + B C D
add B and C,

multiply by A,
divide by D

A * (B + C / D) A B C D / + * * A + B / C D
divide C by D,

add B,
multiply by A

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

What type of expression is 5 4 3 – *

A. Prefix
B. Infix
C. Postfix
D. None of the above (i.e., illegal)

3
9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

What is the infix form of 5 4 3 – *

4
0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Evaluating a Postfix Expression
while there are input tokens left

read the next token
if the token is a value

push it onto the stack.
else

// the token is an operator taking n arguments
pop the top n values from the stack and perform the operation
push the result on the stack

if there is only one value in the stack return it as the result
else

throw an exception

4
1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Draw Stacks to evaluate 5 3 + 2 *

CS200 - Stacks

4
2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Quick check

! If the input string is “5 3 + 2 *”, which of the
following could be what the stack looks like
when trying to evaluate it?

4
3

2
3
5

+
3
5

2
8

A B C

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Stack Interface

push(StackItemType newItem)
– adds a new item to the top of the stack

StackItemType pop() throws StackException
– deletes the item at the top of the stack and returns it
– Exception when deletion fails

StackItemType peek() throws StackException
– returns the top item from the stack, but does not remove it
– Exception when retrieval fails

boolean isEmpty()
– returns true if stack empty, false otherwise

4
4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Comparison of Implementations

! Options for Implementation:
– Array based implementation
– Array List based implementation
– Linked List based implementation

! What are the advantages and disadvantages of each
implementation?

! Let’s look at a Linked List based implementation

CS200 - Stacks

4
5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Stacks and Recursion
! Most implementations of recursion maintain a

stack of activation records, called

the Run Time Stack

! Activation records, or Stack Frames, contain
parameters, local variables and return information
of the method called

! The most recently executed activation record is
stored at the top of the stack. So a call pushes a
new activation record on top of the RT stack

4
6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Applications - the run-time stack

! Nested method calls tracked on call
stack (aka run-time stack)
– First method that returns is the last one

invoked

! Element of call stack - activation
record or stack frame
– parameters
– local variables
– return address: pointer to next instruction

to be executed in calling method

http://en.wikipedia.org/wiki/Image:Call_stack_layout.svg

4
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Factorial example
int factorial(n){
// pre n>=0
// post return n!
if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}

}

4
8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

RTS factorial(3): wind phase
4
9

n=3, r=? n=3, r=?

n=2, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=0, r=1

only active frame: top of the run time stack

if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

RTS factorial(3): unwind phase
5
0

n=3, r=6n=3, r=?

n=2, r=2

n=3, r=?

n=2, r=?

n=1, r=1

return 6

if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5
1 More complex example:

The Towers of Hanoi
! Move pile of disks from source to destination
! Only one disk may be moved at a time.
! No disk may be placed on top of a smaller disk.

CS200 - Recursion

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5
2

Moves in the Towers of Hanoi

Source Destination Spare

CS200 - Recursion

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

5
3 Recursive Solution

CS200 - Recursion

// pegs are numbers, via is computed
// f: from: source peg, t: to: destination peg, v: via: intermediate peg
// state corresponds to return address, v is computed
public void hanoi(int n, int f, int t){

if (n>0) {
// state 0
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n + " from " + f + " to " + t);
hanoi(n-1,v,t);
// state 2

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Run time stack for hanoi(3,1,3)

CS200 - Stacks

5
4

0:n=3,f=1,t=3 1:n=3,f=1,t=3
0:n=2,f=1,t=2

1:n=3,f=1,t=3
1:n=2,f=1,t=2
0:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3
0:n=0,f=1,t=2

if (n>0) {
// state 0
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n +

“ from" + f + " to" + t);
hanoi(n-1,v,t);
// state 2

}

only active frame:
top of the run time stack

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Run time stack for hanoi(3,1,3)

CS200 - Stacks

5
5

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3

if (n>0) {
// state 0
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n +

“ from" + f + " to" + t);
hanoi(n-1,v,t);
// state 2

}

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3
0:n=0,f=2,t=3

System.out:

1:n=3,f=1,t=3
1:n=2,f=1,t=2

“move disk 1 from 1 to 3”
“move disk 2 from 1 to 2”

etcetera

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Hanoi with explicit run time stack

! The main loop of the program is:

while(rts not empty){
pop frame
check frame state
perform appropriate actions

}

CS200 - Stacks

5
6

// state x in code

state 0: initial state
nothing has been done

state 1: back from first “call”

state 2: back from second “call”

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

While loop:
Initially there is one Frame [state 0,n,from,to] on rts
Keep popping frames until rts is empty
When popping a frame:

if n == 0 do nothing (discard frame)
else if frame in state 0:

// do first call hanoi(n-1,from,via):
push [1,n,from,to] and push [0,n-1,from,via]

else if in state 1:
print disk n move
//do second call hanoi(0,n-1,via,to)
push [2,n,from,to] and push [0,n-1,via,to]

else (in state 2):
do nothing

5
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 58

Case Study: Evaluating Expressions
Stacks can be used to evaluate infix expressions.

Run

Evaluate Expression

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Some examples
! 2 + 3
When we see + we haven’t seen operand 3 yet. Use an
operandStack to push operands, and an operatorStack
to push operators:
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)
End of expression: apply operator to operands
Why wait until we see the end or rest of expression?
2+3*4

59

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

! 2 + 3 – 4 is (2+3) – 4, and NOT 2 + (3-4)
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)

Seeing -: apply operator on stack to operands
push(-, operatorStack)

push(4, operandStack)
End: apply operator(s) to operands

60

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

! 2+3*4-5
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)

*: has precedence over +, so
push (*, operatorStack)
push (4, operandStack)

-: apply operators to operands,
push (-, operatorStack)

5:push (5, operandStack)
End: apply operators to operands

61

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

! 2*(3+4)/5
push (2, operandStack)
push (*, operatorStack)

(: make a substack at top of operatorStack:
push (‘(‘, operatorStack)
push (3, operandStack)
push (+, operatorStack)
push (4, operandStack)

): apply operators to operands until ‘(’, pop (‘(’)
push (/, operatorStack)
push (5, operandStack)

End: apply operators to operands

62

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 63

Algorithm
Phase 1: Scanning the expression
The program scans the expression from left to right to extract operands, operators,
and the parentheses.
1.1. If the extracted item is an operand, push it to operandStack.
1.2. If the extracted item is a + or - operator, process all the operators at the
top of operatorStack and push the extracted operator to operatorStack.
1.3. If the extracted item is a * or / operator, process the * or / operators at the
top of operatorStack and push the extracted operator to operatorStack.
1.4. If the extracted item is a (symbol, push it to operatorStack.
1.5. If the extracted item is a) symbol, repeatedly process the operators from
the top of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack
Repeatedly process the operators from the top of operatorStack until
operatorStack is empty.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 64

Example

