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What is a Data Structure?

!A collection of data elements
!Stored in a structured fashion
!With operations that access & manipulate 

elements
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Java Collections Framework

!Collection is a java interface
– java.util.Collection

!Defines abstract methods for objects that 
contain other objects (elements)
– add(E e)
– remove(E e)
– contains(E e)
– toArray(E e)

These are 
examples, not 
an exhaustive 
list
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Three Types of Collections

§ Lists – Store elements in sequential order
§ Ordered Collection

§ Sets – lists allow duplicates, sets do not
§ Unordered Collection

§ Maps – data structure based on <key, value>  
pairs 
§ Holds two objects per entry
§ May contain duplicate values
§ Keys are always unique 

4
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The List Interface

!Elements stored in sequential order
!Programs can specify where an element is 

stored. 
!Programs can access elements by index. 
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Array vs ArrayList vs LinkedList
• Array 

• Allows element update, but does not support 
insertion or deletion of elements

• But the most efficient if insert/delete not needed
• ArrayList class and the LinkedList class 

• Concrete implementations of the List interface. 
• Usage depends on your specific needs (later)

• ArrayList – Fast random access through indices 
• LinkedList – Fast insertion and deletion of 

elements at specific locations 
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java.util.ArrayList
 

 

«interface» 
java.util.List<E> 

 

Creates an empty list with the default initial capacity. 
Creates an array list from an existing collection. 
Creates an empty list with the specified initial capacity. 
Trims the capacity of this ArrayList instance to be the 

list's current size. 
 

+ArrayList() 
+ArrayList(c: Collection<? extends E>) 
+ArrayList(initialCapacity: int) 
+trimToSize(): void 
 
 

«interface» 
java.util.Collection<E> 

 

java.util.ArrayList<E> 
 

interface List<E> 
extends Collection<E>
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java.util.LinkedList
 

 

«interface» 
java.util.List<E> 

 

Creates a default empty linked list. 
Creates a linked list from an existing collection. 
Adds the object to the head of this list. 
Adds the object to the tail of this list. 
Returns the first element from this list. 
Returns the last element from this list. 
Returns and removes the first element from this list. 
Returns and removes the last element from this list. 
 

+LinkedList() 
+LinkedList(c: Collection<? extends E>) 
+addFirst(o: E): void 
+addLast(o: E): void 
+getFirst(): E 
+getLast(): E 
+removeFirst(): E 
+removeLast(): E 
 

«interface» 
java.util.Collection<E> 

 

java.util.LinkedList<E> 
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Linked List
! A structure containing (at least) the size of the 

list (# nodes in it)  and a head: a reference to the 
first node.    (LinkedList object)

! A sequence of nodes, first  referring to second 
referring to third etc.   (Node objects)

9

item next
42

item next
-3

item next
17

item next
9 null

size = 4
head 

LinkedList

Node Node Node Node
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Linked List: constructor
public class LinkedList {

private Node head;
private int size;

public LinkedList() {
head = null;
size = 0;

}

// Code for add, remove, find, clear . . 

}

head = 

size =   0

LinkedList
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public class Node {
private Object item;
private Node next;
public Node(Object item) {

this.item = item;
this.next = null;

}
public Node(Object item, Node next) {

this.item = item;
this.next = next;

}
public void setNext(Node nextNode) {

next = nextNode;
}
public Node getNext() {

return next;
}
public Object getItem() {

return item;
}
public void setItem(Object item){

this.item = item;
}

}
}
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Implementing add
! How do we add to a linked list at a given 

index?

item next
42

item next
-3

item next
17

item next
9 null

size = 4
head 
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Implementing add
! How do we add a node to a linked list at a given index?

Consider all the possible cases!
1. Index out of bounds
2. Insert at head
3. Insert in middle
4. Insert at end
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The add method
public void add(int index, Object item){

if (index<0 || index>size) 
throw new IndexOutOfBoundsException(”out of bounds”);

if (index == 0) {
head = new Node(item, head);

}
else { // find predecessor of node

Node curr = head;
for (int i=0; i<index-1; i++){

curr = curr.getNext();
}
curr.setNext(new Node(item, curr.getNext()));

}
size++;

}
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Implementing remove

– How do we remove a node?

– Cases:
! Index out of range
! At the head
! In the middle
! At the end
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Removing the first node

! Before removing element at index 0:

! After:

head = 

size =   2

item next
-3

item next
20

head = 

size =   3

item next
42

item next
-3

item next
20

element 0 element 1 element 2

element 0 element 1
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The remove method
public void remove(int index) {

if (index<0 || index >= size) 
throw new IndexOutOfBoundsException

("List index out of bounds");
if (index == 0) {

// special case: removing first element
head = head.getNext();

} else {
// removing from elsewhere in the list
Node current = head;
for (int i = 0; i < index - 1; i++) {

current = current.getNext();
}
current.setNext(current.getNext().getNext());

}
size--;

}
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Removing node from the middle
! Before removing element at index 1:

! After:

head = 

size =   2

item next
42

item next
20

head = 

size =   3

item next
42

item next
-3

item next
20

element 0 element 1 element 2

element 0 element 1
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List with a single element

! Before: After:

– We must change head to null.
– Do we need a special case to handle this?

head = 

size =   0

head = 

size =   1

data next
20

element 0



Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All 
rights reserved. 

The clear method

! How do you implement a method for 
removing all the elements from a linked 
list?
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The clear method

public void clear() {
head = null;
size = 0;

}

q Where did all the memory go?
q Java’s garbage collection mechanism takes care of it!
q An object is eligible for garbage collection when no 

references exist that refer to it
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Linear time-ordered structures
Stacks and Queues

! Two data structures that reflect a temporal relationship
– order of removal based on order of insertion

! We will consider:

– “last come, first serve: take from the top of the pile”
" last in first out - LIFO (stack)

– “first come, first serve” 
" first in first out - FIFO (queue)

2
2
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2
3

Stacks or queues?



Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All 
rights reserved. 

What can we do with coin 
dispenser?

! “push” a coin into the dispenser.

! “pop” a coin from the dispenser.

! “peek” at the coin on top, but don’t pop it.

! “isEmpty” check whether this dispenser is 
empty or not.

2
4
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Stacks

! Last In First Out (LIFO) structure
– A stack of dishes in a café
– A stack of quarters in a coin dispenser

! Add/Remove done from same end:  
the top 

5
4
3
2
1

top

2
5
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Possible Stack Operations

! isEmpty(): determine whether stack is empty
! push(): add a new item to the stack

! pop(): remove the item added most recently

! peek(): retrieve, but don’t remove,  the item 
added most recently

! What would we call a collection of these ops?
– An Interface

2
6
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Checking for balanced braces

! How can we use a stack to determine 
whether the braces in a string are balanced?

abc{defg{ijk}{l{mn}}op}qr

abc{def}}{ghij{kl}m

Can you define balanced?
CS200 - Stacks

2
7



Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All 
rights reserved. 

Pseudocode

while ( not at the end of the string){
if (the next character is a “{“){

aStack.push(“{“)
}
else if (the character is a “}”) {

if(aStack.isEmpty()) ERROR!!!
else aStack.pop()

}
}
if(!aStack.isEmpty()) ERROR!!! 

2
8
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question

! Could you use a single int to do the same job?

! How?

2
9

Try it on 
abc{defg{ijk}{l{mn}}op}qr {st{uvw}xyz}

abc{def}}{ghij{kl}m
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Expressions
! Types of Algebraic Expressions

– Prefix
– Postfix
– Infix

! Prefix and postfix are easier to parse.  
No ambiguity. Infix requires extra rules: 
precedence and associativity.  What 
are these?

! Postfix: operator applies to the operands 
that immediately precede it.

! Examples:
1. - 5 * 4 3 
2. 5 - 4 * 3
3. 5 4 3 * -

3
0
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Infix Expressions

! Infix notation places each operator between 
two operands for binary operators:

! This is the customary way we write math 
formulas in programming languages.

! However, we need to specify an order of 
evaluation in order to get the correct answer.

31

A	*	x	*	x	+	B	*	x	+	C;	//	quadratic	equation
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! The evaluation order you may have learned 
in math class is named PEMDAS:

parentheses → exponents → multiplication, 
division → addition, subtraction

Evaluation Order

32
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Associativity
Operators with same precedence:

*  /
and

+   -

are evaluated left to right: 2-3-4 = (2-3)-4

33
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Infix Example
! How a Java infix expression is evaluated, 

parentheses added to show association.

z	=	(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2;
z	=	(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2;	//	parentheses

z	=	(y	*	(6	/	x))	+	(w	*	4	/	v)	– 2;	//	multiplication	(L-R)
z	=	(y	*	(6	/	x))	+	((w	*	4)	/	v)	– 2;	//	multiplication	(L-R)

z	=	(y	*	(6	/	x))	+	((w	*	4)	/	v)	– 2;	//	division	(L-R)
z	=	((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	addition	(L-R)

z	=	((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	subtraction	(L-R)
z	= ((y	*	(6	/	x))	+	((w	*	4)	/	v)))	– 2;	//	assignment

34
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Postfix Expressions

! Postfix notation places the operator after two 
operands for binary operators:

! Also called reverse polish notation, just like a 
vintage Hewlett-Packard calculator!

! No need for parentheses, because the 
evaluation order is unambiguous.

35

A	*	x	*	x	+	B	*	x	+	C	//	infix	version

A	x	*	x	*	B	x	*	+	C	+	//	postfix	version
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Postfix Example
! Evaluating the same expression as postfix, must 

search left to right for operators:

(y	*	(6	/	x)	+	(w	*	4	/	v))	– 2	//	original	infix
y	6	x	/	*	w	4	*	v	/	+	2	- //	postfix	translation

(y (6	x	/)	*)	w	4	*	v	/	+	2	-
((y	(6	x	/)	*) w	4	*	v	/	+	2	-
(y	(6	x	/)	*) (w	4	*) v	/	+	2	-
(y	(6	x	/)	*) ((w	4	*)	v	/) +	2	–
((y	(6	x	/)	*)	((w	4	*)	v	/)	+)	2	-
(((y	(6	x	/)	*)	((w	4	*)	v	/)	+)	2	-)

36
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Prefix Expressions

! Prefix notation places the operator before 
two operands for binary operators:

! Also called polish notation, because first 
documented by polish mathematician.

! No need for parentheses, because the 
evaluation order is unambiguous.

37

A	*	x	*	x	+	B	*	x	+	C									//	infix	version

+	+		*	*	A	x		x	*	B	x	C									//	prefix	version
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Infix, Postfix, Prefix Conversion

38

Infix Postfix Prefix Notes

A * B + C / D A B * C D / + + * A B / C D 
multiply A and B,

divide C by D,
add the results 

A * (B + C) / D A B C + * D / / * A + B C D 
add B and C,

multiply by A,
divide by D 

A * (B + C / D) A B C D / + * * A + B / C D 
divide C by D,

add B,
multiply by A 
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What type of expression is  5 4 3 – *

A. Prefix
B. Infix
C. Postfix
D. None of the above (i.e., illegal)

3
9
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What is the infix form of 5 4 3 – *    

4
0
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Evaluating a Postfix Expression
while there are input tokens left

read the next token
if the token is a value

push it onto the stack.
else

// the token is an operator taking n arguments
pop the top n values from the stack and perform the operation
push the result on the stack

if there is only one value in the stack return it as the result
else 

throw an exception

4
1
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Draw Stacks to evaluate  5  3 + 2 *

CS200 - Stacks

4
2
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Quick check

! If the input string is “5 3 + 2 *”, which of the 
following could be what the stack looks like 
when trying to evaluate it?

4
3

2
3
5

+
3
5

2
8

A B C
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Stack Interface

push(StackItemType newItem)
– adds a new item to the top of the stack

StackItemType pop() throws StackException
– deletes the item at the top of the stack and returns it
– Exception when deletion fails

StackItemType peek() throws StackException
– returns the top item from the stack, but does not remove it
– Exception when retrieval fails

boolean isEmpty()
– returns true if stack empty, false otherwise

4
4
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Comparison of Implementations

! Options for Implementation:
– Array based implementation
– Array List based implementation
– Linked List based implementation

! What are the advantages and disadvantages of each 
implementation?

! Let’s look at a Linked List based implementation

CS200 - Stacks

4
5
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Stacks and Recursion
! Most implementations of recursion maintain a 

stack of activation records, called

the Run Time Stack

! Activation records, or Stack Frames, contain 
parameters, local variables and return information 
of the method called

! The most recently executed activation record is 
stored at the top of the stack. So a call pushes a 
new activation record on top of the RT stack

4
6
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Applications - the run-time stack 

! Nested method calls tracked on call 
stack (aka run-time stack)
– First method that returns is the last one 

invoked

! Element of call stack - activation 
record or stack frame
– parameters
– local variables
– return address: pointer to next instruction 

to be executed in calling method

http://en.wikipedia.org/wiki/Image:Call_stack_layout.svg

4
7
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Factorial example
int factorial(n){
// pre n>=0
// post return n!
if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}

}

4
8
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RTS factorial(3): wind phase
4
9

n=3, r=? n=3, r=?

n=2, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=0, r=1

only active frame: top of the run time stack

if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}
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RTS factorial(3): unwind phase
5
0

n=3, r=6n=3, r=?

n=2, r=2

n=3, r=?

n=2, r=?

n=1, r=1

return 6

if(n==0) { r=1; return r;}
else {r=n*factorial(n-1); return r;}
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5
1 More complex example:

The Towers of Hanoi
! Move pile of disks from source to destination 
! Only one disk may be moved at a time.
! No disk may be placed on top of a smaller disk.

CS200 - Recursion
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5
2

Moves in the Towers of Hanoi

Source Destination Spare

CS200 - Recursion
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5
3 Recursive Solution

CS200 - Recursion

// pegs are numbers, via is computed
// f: from: source peg, t: to: destination peg, v: via: intermediate peg
// state corresponds to return address, v is computed
public void hanoi(int n, int f, int t){

if (n>0) { 
// state 0
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n + " from " + f + " to " + t);
hanoi(n-1,v,t);
//  state 2

}
}
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Run time stack for hanoi(3,1,3)

CS200 - Stacks

5
4

0:n=3,f=1,t=3 1:n=3,f=1,t=3
0:n=2,f=1,t=2

1:n=3,f=1,t=3
1:n=2,f=1,t=2
0:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3
0:n=0,f=1,t=2

if (n>0) { 
// state 0 
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n + 

“ from" + f + " to" + t);
hanoi(n-1,v,t);
// state 2

}

only active frame: 
top of the run time stack
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Run time stack for hanoi(3,1,3)

CS200 - Stacks

5
5

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3

if (n>0) { 
// state 0
int v = 6 - f - t;
hanoi(n-1,f, v);
// state 1
System.out.println("move disk " + n + 

“ from" + f + " to" + t);
hanoi(n-1,v,t);
// state 2

}

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3
0:n=0,f=2,t=3

System.out: 

1:n=3,f=1,t=3
1:n=2,f=1,t=2

“move disk 1 from 1 to 3” 
“move disk 2 from 1 to 2” 

etcetera 
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Hanoi with explicit run time stack 

! The main loop of the program is:

while(rts not empty){
pop frame
check frame state
perform appropriate actions

}

CS200 - Stacks

5
6

// state x in code

state 0: initial state
nothing has been done

state 1: back from first “call”

state 2: back from second “call”
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While loop:
Initially there is one Frame [state 0,n,from,to] on rts
Keep popping frames until rts is empty
When popping a frame:

if n == 0 do nothing (discard frame)
else if frame in state 0:

// do first call hanoi(n-1,from,via):
push [1,n,from,to] and push [0,n-1,from,via]

else if in state 1:
print disk n move
//do second call hanoi(0,n-1,via,to)
push [2,n,from,to]  and  push [0,n-1,via,to]

else (in state 2):
do nothing

5
7
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Case Study: Evaluating Expressions
Stacks can be used to evaluate infix expressions.

Run

Evaluate Expression
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Some examples
! 2 + 3
When we see + we haven’t seen operand 3 yet. Use an 
operandStack to push operands, and an operatorStack
to push operators:
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)
End of expression: apply operator to operands
Why wait until we see the end or rest of expression?
2+3*4

59
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! 2 + 3 – 4  is (2+3) – 4, and NOT 2 + (3-4) 
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)

Seeing -: apply operator on stack to operands
push(-, operatorStack)

push(4, operandStack)
End: apply operator(s) to operands

60
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! 2+3*4-5
push (2, operandStack)
push (+, operatorStack)
push (3, operandStack)

*: has precedence over +, so
push (*, operatorStack)
push (4, operandStack)

-: apply operators to operands,
push (-, operatorStack)

5:push (5, operandStack)
End: apply operators to operands 

61
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! 2*(3+4)/5
push (2, operandStack)
push (*, operatorStack)

(: make a substack at top of operatorStack: 
push ( ‘(‘, operatorStack) 
push (3, operandStack)
push (+, operatorStack)
push (4, operandStack)

): apply operators to operands until ‘(’, pop ( ‘(’ )
push (/, operatorStack)
push (5, operandStack)

End: apply operators to operands 
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Algorithm
Phase 1: Scanning the expression
The program scans the expression from left to right to extract operands, operators, 
and the parentheses.
1.1. If the extracted item is an operand, push it to operandStack.
1.2. If the extracted item is a + or - operator, process all the operators at the 
top of operatorStack and push the extracted operator to operatorStack.
1.3. If the extracted item is a * or / operator, process the * or / operators at the 
top of operatorStack and push the extracted operator to operatorStack.
1.4. If the extracted item is a ( symbol, push it to operatorStack.
1.5. If the extracted item is a ) symbol, repeatedly process the operators from 
the top of operatorStack until seeing the ( symbol on the stack.

Phase 2: Clearing the stack
Repeatedly process the operators from the top of operatorStack until 
operatorStack is empty.
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Example


