
CS165: Priority Queues, Heaps

CS165 - Priority Queues 1

Sudipto Ghosh, Wim Bohm



Priority Queues

n Characteristics
q Items are associated with a Comparable value: priority
q Provide access to one element at a time - the one with 

the highest priority

n offer(E e) and add(E e) – inserts the element into 
the priority queue based on the priority order

n remove() and poll() – removes the head of the 
queue (which is the highest priority) and returns it 

CS165 - Priority Queues 2



PQ – Linked List Implementation

n Reference-based implementation
q Sorted in descending order

n Highest priority value is at the beginning of the linked list
n remove() returns the item that pqHead references and 

changes pqHead to reference the next item.
n offer(E e) must traverse the list to find the correct 

position for insertion.

9699.2 95.8 3

pqHead …

CS165 - Priority Queues 3



Complete tree definition
n Complete binary tree of height h

q zero or more rightmost leaves not present 
at level h

n A binary tree T of height h is 
complete if
q All nodes at level h – 2 and above have 

two children each, and
q When a node at level h – 1 has children, 

all nodes to its left at the same level have 
two children each, and

q When a node at level h - 1 has one child, 
it is a left child

q So the leaves at level h go from left to 
right

4CS165 - Priority Queues

h-2:

h-1:

h:



Complete Binary Tree

5

Level-by-level numbering of  a complete binary tree, NOTE 0 based!

0:Jane

1:Bob 2:Tom

3:Alan 4:Ellen 5:Nancy

What is the parent
child index relationship?

CS165 - Priority Queues

left child i: at 2*i+1

right child i: at 2*(i+1)

parent i: at (i-1)/2

There are no “holes” (missing nodes in the complete binary tree),
so we can store a complete binary tree in an array!!



Heap - Definition
n A maximum heap (maxheap) is a complete 

binary tree that satisfies the following:
q Nodes are (key,value) pairs
q It has the heap property:

n Its root contains a key greater or equal to the keys of 
its children

n Its left and right sub-trees are also maxheaps

n A size 1 heap is just one leaf.

q A minheap has the root less or equal children, 
and left and right sub trees are also minheaps

CS165 - Priority Queues 6



maxHeap Property Implications

n Implications of the heap property:
q The root holds the maximum value (global property)
q Values in descending order on every path from root to 

leaf

n A Heap is NOT a binary search tree, as in a BST 
the nodes in the right sub tree of the root are 
larger than the root

CS165 - Priority Queues 7



Examples

Satisfies 
heap property  
AND 
Complete

Satisfies heap 
property BUT
Not complete

Does not 
satisfy heap
property AND
Not complete

50

2520

10 15 5

30

255

10

15

20

30

2015

10 5 25

CS165 - Priority Queues 8



Array(List) Implementation

50

2520

10 15 5

50
20
25
10
15
5

0

1

2

3

4

5

CS165 - Priority Queues 9



Array(List) Implementation 

n Traversal:
q Root at position 0
q Left child of position i at position 2*i+1
q Right child of position i at position 2*(i+1)
q Parent of position i at position (i-1)/2 

(don’t forget: int arithmetic truncates)

CS165 - Priority Queues 10



Heap Operations - heapInsert
n Step 1: put a new value into first open position 

(maintaining completeness), i.e. at the end

n But now we potentially violated the heap property, so:

n Step 2: bubble values up

q Re-enforcing the heap property

q Swap with parent, if key of new value > key of parent,  until in 
the right place.

q The heap property holds for the tree below the new value,  
when swapping up 

CS165 - Priority Queues 11



Swapping up

n Swapping up enforces heap property for sub 
tree below the new, inserted value: 

n if (new > x) swap(x,new)
x>y, therefore
new > y 

CS165 - Priority Queues 12

x
newy

new
x y



Insertion into a heap (Insert 15)

9

65

3 2 15

Insert 15

CS165 - Priority Queues 13

bubble up



Insertion into a heap (Insert 15)

9

6

5

3 2

CS165 - Priority Queues 14

15

bubble up



Insertion into a heap (Insert 15)

15

6

5

3 2

CS165 - Priority Queues 15

9



Heap operations – heapDelete

n Step 1: remove value at root (Why?)
n Step 2: substitute with rightmost leaf of bottom level 

(Why?)
n Step 3: bubble down

q Swap with maximum child as necessary, until in place
q each bubble down restores the heap property at the 

swapped node

q this is called HEAPIFY 

CS165 - Priority Queues 16



Swapping down

n Swapping down enforces heap property at 
the swap location: 

n new<x  and y<x:
swap(x,new)

x>y and x>new

CS165 - Priority Queues 17

new

xy
x

new y



Deletion from a heap

5

9

3 2

10

6

Delete 10
Place last node in root

CS165 - Priority Queues 18



9

5

3 2

6

CS165 - Priority Queues 19

bubble down
heapify
draw the heap



5

9

3 2

6

CS165 - Priority Queues 20

delete again
draw the heap



CS165 - Priority Queues 21

5

6

3

25

2

3

6



HeapSort

n Algorithm
q Insert all elements (one at a time) to a heap
q Iteratively delete them

n Removes minimum/maximum value at each step

CS165 - Priority Queues 22



HeapSort

n Alternative method (in-place):
q buildHeap: create a heap out of the input array:

n Consider the input array as a complete binary tree
n Create a heap by iteratively expanding the portion of the 

tree that is a heap 
q Leaves are already heaps
q Start at last internal node
q Go backwards calling heapify with each internal node

q Iteratively swap the root item with last item in 
unsorted portion and rebuild

CS165 - Priority Queues 23



Building the heap

n WHY start at (n-2)/2?
n WHY go backwards?

n The whole method is called buildHeap
n One bubble down is called heapify

buildheap(n){
for (i = (n-2)/2 down to 0) 
//pre: the tree rooted at index is a semiheap
//i.e., the sub trees are heaps
heapify(i); // bubble down
//post: the tree rooted at index is a heap

}

CS165 - Priority Queues 24



CS165 - Priority Queues 25

6

3 7

109 2

6 3 7 9 2 10

Draw as a Complete Binary Tree:

Repeatedly heapify, starting at last internal node, 
going backwards



CS165 - Priority Queues 26

6

3 10

79 2



CS165 - Priority Queues 27

6

9 10

73 2



CS165 - Priority Queues 28

10

9 7

63 2

10 9 7 3 2 6



In place heapsort using an array
n First build a heap out of an input array using 

buildHeap().  See previous slides.
n Then partition the array into two regions; starting 

with the full heap and an empty sorted and 
stepwise growing sorted and shrinking heap.

29

HEAP
Sorted (Largest 
elements in array)

CS165 - Priority Queues



30

10 9 6 3 2 5
9 5 6 3 2 10

5 3 2 1096

6 5 2 3 9 10

3 2 10965

2 3 10965

2 3 10965

HEAP

SORTED

Do it, do it

CS165 - Priority Queues


