
Grammars, Regular Expressions
and Expression Trees

CS2: Data Structures and Algorithms
Colorado State University

Original slides by Chris Wilcox,
Updated by Russ Wakefield, Wim Bohm, and Sudipto Ghosh

Topics

!Grammars
!Production Rules
!Tokenizing
!Regular Expressions
!Expression Trees

CS165: Data Structures and Algorithms – Spring Semester 2020
2

Ambiguity in Natural Languages

“British left waffles on Falklands.”
Did the British leave waffles behind, or is there waffling
by the British political left wing?

“Brave men run in my family.”
Do the brave men in his family run, or are there many
brave men in his ancestry?

3
CS165: Data Structures and Algorithms – Spring Semester 2020

Grammars

! Grammars avoid the ambiguities associated
with natural languages.

! Programming languages are defined using
grammars with specific properties.

! Grammars simplify the interpretation of
programs by compilers and other tools.

! Grammars use a set of symbols and production
rules.

4
CS165: Data Structures and Algorithms – Spring Semester 2020

Definitions

! Grammar: System and structure of a language.
! Syntax: Set of rules for arranging and combining

language elements (form):
– Assignment statement syntax:

variable = expression;

! Semantics: Meaning of the language elements and
constructs (function):
– Assignment statement semantics:

evaluate the expression and store the result in the variable.

5
CS165: Data Structures and Algorithms – Spring Semester 2020

Language and Grammar

! A language is a set of sentences:
– strings of terminals

" the words: while, (, x < ….

! Grammar defines these sentences, using
production rules

LHS ::= RHS

Read this as the LHS is defined by RHS

6
CS165: Data Structures and Algorithms – Spring Semester 2020

Production Rules
LHS ::= RHS

<while_statement> ::== 'while' '(‘ <condition> ')' '{‘ <body> ‘}’

! LHS is a non-terminal
! RHS is a string of terminals and non-terminals

- Terminals are the words of the language
§ For example: while, (, {, },)

– Non-terminals are concepts in the language
§ For example: condition, body

– Non-terminals include Java statements
§ For example: while_statement

7
CS165: Data Structures and Algorithms – Spring Semester 2020

Generating and Checking Sentences

! A grammar can be used to generate sentences.
– A sequence of productions creates a sentence when no

non-terminal is left

! A grammar can also be used to check whether or
not a given sentence is syntactically correct.

8
CS165: Data Structures and Algorithms – Spring Semester 2020

Production Rules (Example)
! Non-terminals produce strings of terminals.

– For example, non-terminal S produces certain valid
strings of a’s and b’s.

– S ::= aSb
– S ::= ba

! Valid strings:
ba,	abab,	aababb,	aaababbb,	...	or anbabn | n ≥ 0)

! Invalid strings: cannot be constructed from the rules
a,	b,	ab,	abb,	aba,	bab,	...	and everything	else!

9
CS165: Data Structures and Algorithms – Spring Semester 2020

Example of Using Production Rules

With the following two rules:
! S ::= aSb or
! S ::= ba
We	can	produce	the	following	strings:
! S à ba
! S à aSb à abab
! S à aSb à aaSbb à aababb
! S à anbabn | n ≥ 0

10
CS165: Data Structures and Algorithms – Spring Semester 2020

Production Rules and Symbols
! ::= means equivalence, is defined by
! <symbol> means needs further expansion
! Concatenation

x y denotes x followed by y
! Choice

x | y | z means one of x or y or z
! Repetition

* means 0 or more occurrences
+ means 1 or more occurrences

! Block Structure: recursive definition
A statement can have statements inside it

11
CS165: Data Structures and Algorithms – Spring Semester 2020

<Statement>	::=	<Assignment>	|	<ForStatement>	|	…
<ForStatement>	::=
for	(<ForInit>	;	<Expression>	;	<ForUpdate>)	
<Statement>

<Assignment>	::=
<LeftHand>	<AssignmentOp>	<Expression>

<AssignmentOp> ::=
= | *= | /= | %= | += …….

Example Production Rules in Java

12
CS165: Data Structures and Algorithms – Spring Semester 2020

Note the recursion

Tokens

! Building blocks of a programming language:
– keywords, identifiers, numbers, punctuation

! Initial compiler phase splits up the character
stream into a sequence of tokens.

! Tokens themselves are defined by regular
expressions although one could also use
production rules.

! Let’s see the production rules first.

13
CS165: Data Structures and Algorithms – Spring Semester 2020

Production Rules for Java Identifiers

14

<identifier>	::=	<initial>	(<initial>	|	<digits>)*
<initial>	::=	<letter>	|	_	|	$	
<letter>	::=	a	|	b	|	c	|	...	z	|	A	|	B	|	C	|	...	Z
<digit>	::=	0	|	1	|	2	|	...	9

! Valid:
myInt0,	_myChar1,	$myFloat2,	_$_,	_12345,	...

! Invalid:
123456,	123myIdent,	%Hello,	my-Integer,	...

CS165: Data Structures and Algorithms – Spring Semester 2020

! An alternative definition mechanism
– Simpler because non-recursive

! Syntax used to define strings, for example
by the Linux ‘grep’ command.

! Many other usages, for example Java String
split and many other methods accept them.

! Two ways to interpret, 1) as a pattern
matcher, or 2) as a specification of a syntax.

Regular Expressions

15
CS165: Data Structures and Algorithms – Spring Semester 2020

Regex Cheatsheet (1)

16

Symbol Meaning Example

* Match zero, one or more of previous Ah* matches "A", "Ah", "Ahhhhh"

? Match zero or one of previous Ah? matches "A" or "Ah"

+ Match one or more of previous Ah+ matches "Ah", "Ahh" not "A"

\ Used to escape a special character Hungry\? matches "Hungry?"

. Wildcard, matches any character do.* matches "dog", "door", "dot"

[] Matches a range of characters [a-zA-Z] matches ASCII a-z or A-Z
[^0-9] matches any except 0-9.

CS165: Data Structures and Algorithms – Spring Semester 2020

Regex Cheatsheet (2)

17

Symbol Meaning Example

| Matches previous or next
character or group

(Mon)|(Tues)day matches "Monday" or
"Tuesday"

{ } Matches a specified number
of occurrences of previous

[0-9]{3} matches "315" but not "31"
[0-9]{2,4} matches "12", "123", and "1234"

^ Matches beginning of a string. ^http matches strings that begin with http,
such as a url.

$ Matches the end of a string. ing$ matches "exciting" but not "ingenious"

CS165: Data Structures and Algorithms – Spring Semester 2020

! [0-9a-f]+ matches hexadecimal
– ab, 1234, cdef, a0f6, 66cd, ffff, 456affff.

! [0-9a-zA-Z]+ matches alpha-numeric strings with a
mixture of digits and letters

! [0-9]{3}-[0-9]{2}-[0-9]{4} matches social security
numbers
– 166-11-4433

! [a-z0-9]+@([a-z]+\.)+(edu|com) matches emails
– whoever@gmail.com

Regex Examples (1)

18
CS165: Data Structures and Algorithms – Spring Semester 2020

! b[aeiou]+t matches
– bat, bet, but
– and also boot, beet, beat,etc.

! [$_A-Za-z][$_A-Za-z0-9]* matches Java identifiers
– x, myInteger0, _ident, a01

! [A-Z][a-z]* matches any capitalized word
– i.e., a capital followed by lowercase letters (e.g., Alphabet)

! .u.u.u. uses the wildcard to match any letter,
– e.g. cumulus

Regex Examples (2)

19
CS165: Data Structures and Algorithms – Spring Semester 2020

Expression Trees

! Decompose source code and build a
representation that represents its structure.

! Results in a data structure such as a tree:

20

(A	*	x	*	x)	+	(B	*	x)	+	C

A	x	*	x	*	B	x	*	+	C	+	
//	postfix	version

+
C+

**
* xBx

xA

CS165: Data Structures and Algorithms – Spring Semester 2020

Expression Trees

21

Infix

((A * B) + (C / D))

((A * (B + C)) / D)

(A * (B + (C / D)))

CS165: Data Structures and Algorithms – Spring Semester 2020

What’s next?

! Trees are extremely useful structures in
Computer Science.
– Compilers: Scanning tokens and converting them to

expression trees
– Databases: Efficient indexing for fast retrievals

! Next week we will see how to implement
Binary Search Trees

22
CS165: Data Structures and Algorithms – Spring Semester 2020

