
Java Iterators

Wim Bohm, Sudipto Ghosh

Motivation
n We often want to access every item in a collection

of items
q We call this traversing or iterating
q Example: array

for (int i = 0; i < array.length; i++)
/* do something with array[i] */

q Easy because we know exactly how an array works!

Motivation

n Traversing through the elements of a collection
is very common in programming, and iterators
provide a uniform way of doing so.

n Java provides an interface for stepping
through all elements in any collection, called
an iterator

n Advantage? Using an iterator, we don’t
need to know how the data structure is
implemented!

4

An iterator is an object that provides a
uniform way for traversing the elements in
a container such as a set, list, binary tree,
etc.

Iterating through an ArrayList
n Iterating through an ArrayList of Strings:

for (int i = 0; i < list.size(); i++) {
String s = list.get(i);
//do something with s

}

n Alternative:
Iterator<String> itr = list.iterator();
while (itr.hasNext()) {

String s = list.next();
}

This syntax of iteration is generic and applies to any Java
class that implements the Iterator interface.

Iterating through an ArrayList
n Iterating through an ArrayList of Strings:

for (int i = 0; i < list.size(); i++) {
String s = list.get(i);
//do something with s

}

n Alternative:
Iterator<String> itr = list.iterator();
while (itr.hasNext()) {

String s = list.next();
}

Advantage of the alternative: the code will work even if we
decide to store the data in a different data structure (as long
as it provides an iterator)

Using an iterator

ArrayIterator<Integer> itr = new ArrayIterator<Integer>(array);
while (itr.hasNext()){

Integer element = itr.next();
}

The Iterable interface
Given an ArrayList we can traverse it using an iterator:

Iterator<String> itr = list.iterator();
while (itr.hasNext()) {

String s = itr.next();
}

Or using the foreach form of the for loop:
for (String s : list) {

//do something with s
}

An Iterator can only be used once.
Iterables can be the subject of “foreach” multiple times.
Possible because an ArrayList implements Iterable.

The Iterable interface

n The Java API has a generic interface called
Iterable<T> that allows an object to be the
target of a “foreach” statement
q public Iterator<T> iterator();

returns an iterator

n Let’s check out some code: ArrayIterable.java

