
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 25 Binary Search Trees
Original slides: Liang

updated by Wim Bohm and Sudipto Ghosh

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Binary Trees

A list, stack, or queue is a linear structure that consists of a
sequence of elements. A binary tree is a hierarchical
structure. It is either empty or consists of an element, called
the root, and two distinct binary trees, called the left
subtree and right subtree.

60

55 100

57 67 107 45

G

F R

M T A

(A) (B)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Binary Tree Terms

! A Binary consists of
– A root
– A left binary tree (left child)
– A right binary tree (right child)

! A node without children is a leaf. A node has one
parent, except for the root, which has no parents.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Representing Binary Trees
A binary tree can be represented using a set of linked
nodes. Each node contains a value and two links named
left and right that reference the left child and right child,
respectively.

class TreeNode<E> {
E element;
TreeNode<E> left;
TreeNode<E> right;

public TreeNode(E o) {
element = o;

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Binary Search Tree
! A binary search tree of (key, value) pairs,

with no duplicate keys, has the following
properties

! Every node in a left subtree has keys less
than the key of the root

! Every node in a right subtree has keys
greater than the key of the node.

! (often we only show the keys)
! What is the difference w.r.t heaps?

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Searching an Element in a Binary Search Tree
public search(E element) {

TreeNode<E> current = root; // Start from the root

while (current != null)
if (element key less than the key in current.element) {
current = current.left; // Go left

}

else if (element value greater than the value in
current.element) {

current = current.right; // Go right
}

else // Element matches current.element
return found ; // Element is found

return not found; // Element is not in the tree
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

Inserting an Element to a Binary Tree
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted
}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

Trace Inserting 101 into the following tree
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 11

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

101 < 60?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 12

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

101 > 60?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 13

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current
parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 14

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 15

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 60 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 16

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 < 100 false

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 17

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 18

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 19

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 20

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 > 100 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 21

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 22

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

current

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 23

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

Since current.left is
null,current becomes null

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 24

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

Since current.left is
null,current becomes null

parent

current is null now

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 25

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(elemenet);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

Since current.left is
null,current becomes null

parent

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 26

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(elemenet);
else

parent.right = new TreeNode(element);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

parent

101

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 27

Trace Inserting 101 into the following tree, cont.
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(element);
else

parent.right = new TreeNode(element);

return true; // Element inserted

}

Insert 101 into the following tree.

 60

55 100

57 45 67 107

root

parent

101

101 < 107 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 28

Inserting 59 into the Tree
if (root == null)

root = new TreeNode(element);
else {

// Locate the parent node
current = root;
while (current != null)

if (element value < the value in current.element) {
parent = current;
current = current.left;

}
else if (element value > the value in current.element) {

parent = current;
current = current.right;

}
else

return false; // Duplicate node not inserted

// Create the new node and attach it to the parent node
if (element < parent.element)

parent.left = new TreeNode(element);
else

parent.right = new TreeNode(element);

return true; // Element inserted

}

 60

55 100

57 45 67 107

root

59 101

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 29

Tree Traversal
Tree traversal is the process of visiting each node in the
tree exactly once. There are several ways to traverse a tree.
This section presents depth-first: in-, pre-, post order
and breadth-first: level order traversals.
!InOrder

– The inorder traversal is to visit the left subtree of the current node first
recursively, then the current node itself, and finally the right subtree of
the current node recursively.

!Postorder
– The postorder traversal is to visit the left subtree of the current node

first, then the right subtree of the current node, and finally the current
node itself.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 30

Tree Traversal, cont.
! Preorder

– The preorder traversal is to visit the current node first, then
the left subtree of the current node recursively, and
finally the right subtree of the current node
recursively.

! Level order
– The level order (breadth-first) traversal is to visit the nodes

level by level. First visit the root, then all children of the
root from left to right, then grandchildren of the root from
left to right, and so on.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 31

Tree Traversal, cont.

Inorder:
Postorder:
Preorder:
Level order:

 60

55 100

57 45 67 107

root

59 101

45 55 57 59 60 67 100 101 107
45 59 57 55 67 101 107 100 60
60 55 45 57 59 100 67 107 101
60 55 100 45 57 67 107 59 101

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Breadth-first traversal (BFS)

! Breadth-first processes the tree level by level
starting at the root and handling all the nodes
at a particular level from left to right.

! To achieve this, we use a Queue, because the
parent child references are not sufficient

32

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Breadth-first traversal

33

60

20 70

10 40

30 50

60 – 20 – 70 – 10 – 40 – 30 – 50

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

LevelOrder

A

B

D

G

C

E

H

F

I

Queue Output
Init [A] -

Step 1 [B,C] A

Step 2 [C,D] A B

Step 3 [D,E,F] A B C

Step 4 [E,F,G,H] A B C D

Step 5 [F,G,H] A B C D E

Step 6 [G,H,I] A B C D E F

Step 7 [H,I] A B C D E F G

Step 8 [I] A B C D E F G H

Step 9 [] A B C D E F G H I

34

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Deleting a BST node

! What is the problem?
! What to do?
! Cases to Consider

– Delete something that is not there
" Throw exception

– Delete a leaf
" Easy, just set link from parent to null

– Delete a node with one child
– Delete a node with two children

35

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Delete
Case 1: one child

5

8

6

8

6

Child becomes root

delete(5)

36

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Delete
Case 2: two children

5

2

1

8

4 6 9

7

delete(5)Which are valid
replacement nodes?

37

4 and 6, WHY?

max of left, min of right

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Digression: inorder traversal
of BST

! In order:
– go left
– visit the node
– go right

! The keys of an inorder traversal of a BST are
in sorted order!

38

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Replace with successor
5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that node with
its right child, if necessary (an easy delete case).
That node is the inorder successor of the root.

Can that node have two children? A left child?

7

6

2

1

8

4 7 9

delete(5)

39

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Replace with predecessor
5

2

1

8

4 6 9

Replace root with its rightmost leftt descendant and replace that node with
its left child, if necessary (an easy delete case).
That node is the inorder predecessor of the root.

Can that node have two children? A right child?

7

delete(5)

40

2

1

8

6 9

7

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Delete
Case 2: two children

1. Find the inorder successor or predecessor M
of N’s search key.
– The node whose search key comes immediately

after or before N’s search key

2. Copy the item of M, to the deleting node N.

3. Remove the node M from the tree.

41

