
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 27 Hashing

CS165
Original Slides by Liang from

Introduction to Java Programming
Modifications by Wim Bohm and Sudipto Ghosh

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Topics
✦ Why is hashing needed? (§27.3).
✦ How to obtain the hash code for an object and design the

hash function to map a key to an index (§27.4).
✦ Handling collisions using open addressing (§27.5).
✦ Linear probing, quadratic probing, and double hashing

(§27.5).
✦ Handling collisions using separate chaining (§27.6).
✦ Load factor and the need for rehashing (§27.7).
✦ Implementation of Hashmap (§27.8).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Why Hashing?
✦ Motivation: Quickly search, insert, and delete an

element in a container

✦ Well-balanced search trees: Find an element in O(logn)
time.

✦ Can we do better? Yes!
✦ Use a technique called hashing.
✦ Implement a map or a set to search, insert, and delete an

element in O(1) time.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Map
✦ Data structure that stores entries containing two parts:

✦ Key: also called search key
✦ Used to search for the corresponding value

✦ Value
✦ Data stored

✦ Example:
✦ A Dictionary can be stored in a map
✦ Keys: words
✦ Values: definitions of the words

✦ A map is also called a dictionary, a hash table, or an
associative array.

✦ The new trend is to use the term map.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 5

What is Hashing?

✦ Accessing an element in an array:
✦ Retrieve the element using the index in O(1) time.

✦ Can we use an array as a map?
✦ Key: array index
✦ Value: array element

✦ Need to map a key to an array index.
✦ Hash table: array that stores the values
✦ Hash function: function that maps a key to an index in

the table

Hashing is a technique that retrieves the value using the
index obtained from key without performing a search.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Typical Hash Function
Step 1: Convert a search key to an integer value called a hash code.
Step 2: Compresses the hash code into an index to the hash table.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Collisions

Collision: two keys
map to the same index

Hash function: key%101

Both 4567 and 7597 map to 22

CS200 - Hash Tables
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The Birthday Problem

! What is the minimum number of people so that the
probability that at least two of them have the same
birthday is greater than ½?

! Assumptions:
– Birthdays are independent
– Each birthday is equally likely

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The Birthday Problem
! What is the minimum number of people so that the

probability that at least two of them have the same
birthday is greater than ½?

! pn – the probability that all people have different
birthdays

! at least two have same birthday:

pn = 1
365
366

364
366

· · · 366� (n� 1)
366

n = 23⇤ 1� pn ⇥ 0.506

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

The Birthday Problem:
Probabilities

N: # of people P(N): probability that at least two of the N people have the
same birthday.

10 11.7 %

20 41.1 %

23 50.7 %

30 70.6 %

50 97. 0 %

57 99.0%

100 99.99997%

200 99.999999999999999999999999999998%

366 100%

CS200 - Hash Tables
10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Probability of Collision

! How many items do you need to have in a
hash table, so that the probability of
collision is greater than ½?

! For a table of size 1,000,000 you only need
1178 items for this to happen!

CS200 - Hash Tables
11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Collisions

Collision: two keys
map to the same
index

Hash function: key%101

both 4567 and 7597 map to 22

CS200 - Hash Tables
12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Methods for Handling Collisions

! Approach 1: Open addressing
– Probe for an empty (open) slot in the hash table

! Approach 2: Restructuring the hash table
– Change the structure of the array table:

" make each hash table slot a collection
" ArrayList, or linked list

– often called separate chaining
– Extendable dynamic hashing

CS200 - Hash Tables
13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Open addressing
! When colliding with a location in the hash table that is

already occupied
– Probe for some other empty, open, location in which to place

the item.
– Probe sequence

" The sequence of locations that you examine
" Linear probing uses a constant step, and thus probes

" Loc
" (loc+step)%size
" (loc+2*step)%size
" etc.

" We use step=1 for linear probing examples

CS200 - Hash Tables
14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Linear Probing, step = 1
! Use first char. as hash function

– Init: ale, bay, egg, home
! Where to search for

– egg
– ink

ale
bay

egg

home

hash code 8
n Where to add

n gift
n age

6 empty
gift

age

0 full, 1 full, 2 empty

hash code 4

Question: During the process of linear probing, if there is an
empty spot,
A. Item not found ?
or
B. There is still a chance to find the item ?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Open addressing: Linear Probing
! Deletion:

!Empty positions created along a probe sequence could cause the
retrieve method to stop, incorrectly indicating failure.

! Resolution:
!Each position can be in one of three states occupied, empty, or

deleted.
!Retrieve then continues probing when encountering a deleted

position.

! Insert into empty or deleted positions.

CS200 - Hash Tables
16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Linear Probing (cont.)
! insert

– bay
– age
– acre

! remove
– bay
– age

! retrieve
– acre

ale

egg

home
gift

Question: Where does almond go now?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 18

Linear Probing Animation
http://www.cs.armstrong.edu/liang/animation/web/LinearProbing.html

Cluster gets
created here

• Clusters can grow and merge into large clusters.
• Affects search, adding, removal.

http://www.cs.armstrong.edu/liang/animation/web/LinearProbing.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 19

Quadratic Probing

! Quadratic probing can avoid the clustering problem in linear probing.
! Linear probing looks at the consecutive cells beginning at index k.
! Quadratic probing increases the index by j2 for j = 1, 2, 3, ...
! The actual index searched are k, k + 1, k + 4, …

www.cs.armstrong.edu/liang/animation/web/QuadraticProbing.html

http://www.cs.armstrong.edu/liang/animation/web/QuadraticProbing.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 20

Summary of Linear and Quadratic
Probing

! Start at index k = hash(key)
! Increments are independent of the keys
! Incr = step for linear, j2 for quadratic
! New index

– Linear probing with step=1: (k + 1)%N, (k + 2)%N, …
– Quadratic probing j=1: (k + 1)%N, (k + 4)%N, …

! Both can cause clustering.
– Linear probing is worse
– Quadratic probing can also cause entries to collide in the same

sequence (just quadratic instead of linear)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 21

Double Hashing
! Use a secondary hash function on the keys to determine

the increments to avoid the clustering problem.
! Initial index k is calculated by hash function h(key).
! Use second hash function h'(key) to calculate

increments
! New index = (k + j * h'(key)) % N

– (k + h'(key))%N, (k + 2*h'(key))%N, (k + 3*h'(key))%N, …

Example:
h(key) = key% 11;
h'(key) = 7 – key% 7;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 22

Double Hashing

Example: Insert element with search key = 12
• h(12) = 12 % 11 = 1
• h’(12) = 7 – 12 % 7 = 7 – 5 = 2;

https://liveexample.pearsoncmg.com/dsanimation/DoubleHashingeBook.html

https://liveexample.pearsoncmg.com/dsanimation/DoubleHashingeBook.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 23

Handling Collisions Using Separate Chaining
! Don’t try to find new locations.
! Place all entries with the same hash index into the same location,
! Each location in the separate chaining scheme is called a bucket.
! A bucket is a container that holds multiple entries.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Load Factor

! Measures how full a hash table is

! ! = #$%&'()* '+'%'#,- .# ,/' /0-/ ,0&+'
#$%&'()* +)10,.)#- .# ,/' /0-/ ,0&+'

! Collisions can increase with higher value of !
! For open addressing schemes:

– ! lies between 0 (empty) and 1 (full)
– Ideal value = 0.5

! For separate chaining scheme:
– ! can have any value
– Ideal value = 0.9

24

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

Rehashing

! To avoid collisions, when ! reaches a threshold
– Create a new larger hash table
– Rehash all the map entries into the new hash table

! Rehashing is costly and can prevent other
operations on the hash table from happening

! Generally size is doubled upon rehashing
! java.util.HashMap uses a threshold of 0.75

25

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 26

Implementing Map Using Hashing

MyMap

Run

MyHashMap

TestMyHashMap

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 27

Implementing Set Using Hashing

MySet

Run

MyHashSet

TestMyHashSet

Explanation of MyHashMap
and MyHashSet

Sudipto Ghosh and Wim Bohm
CS165

Based on the code in Liang Chapter 27

MyHashMap structure

Number of slots is a power of 2 for convenience with hashing.

0

2

1

3

4

5

6

7

null

null

null

null

null

null

null

null

Initially each entry points to null.
There are no buckets.

0

2

1

3

4

5

6

7

null

null

null

null

null

K1, V1 K2, V2 null

K3, V3 null

K4, V4 K5, V5 nullK6, V6

At some later point in the execution.

Ki, Vi

Entry is a <key, value> pair

Simple hash function
hash(key) = key & (N-1)

This uses bit-wise operators.
Faster execution than multiplication, division, etc.

Why do we choose this type of hash function?
If N is a power of 2,
then this hash will always produce a number between 0 and N-1.
Let’s take N = 8, so N-1 = 7.

Key = 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0

N-1 = 0 1 1 1

Key & (N-1) = 0 1 0 0 = 4

Problem with simple hash function and solution
In the last example, if the last three bits are the same, then the keys

will produce the same hash value.
Need a better distribution.

Use the notion of folding.
Use bitwise right shift operator and bitwise exclusive-or operator

Key = 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0

Key >> 16 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1

Key^(Key >> 16)= 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1

Hash function used in the code

/** Ensure the hashing is evenly distributed */
private static int supplementalHash(int h) {

h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);

}

/** Hash function */
private int hash(int hashCode) {

return supplementalHash(hashCode) & (capacity - 1);
}

>>> unsigned right-shift operator

