Chapter 27 Hashing

CS165
 Original Slides by Liang from Introduction to Java Programming Modifications by Wim Bohm and Sudipto Ghosh

Topics

+ Why is hashing needed? (§27.3).
+ How to obtain the hash code for an object and design the hash function to map a key to an index (§27.4).
+ Handling collisions using open addressing (§27.5).
+ Linear probing, quadratic probing, and double hashing (§27.5).
+ Handling collisions using separate chaining (§27.6).
$+\quad$ Load factor and the need for rehashing (§27.7).
+ Implementation of Hashmap (§27.8).

Why Hashing?

+ Motivation: Quickly search, insert, and delete an element in a container
+ Well-balanced search trees: Find an element in $\mathrm{O}(\operatorname{logn})$ time.
+ Can we do better? Yes!
+ Use a technique called hashing.
+ Implement a map or a set to search, insert, and delete an element in $\mathrm{O}(1)$ time.

Map

+ Data structure that stores entries containing two parts:
+ Key: also called search key
+ Used to search for the corresponding value
+ Value
+ Data stored
+ Example:
+ A Dictionary can be stored in a map
+ Keys: words
+ Values: definitions of the words
+ A map is also called a dictionary, a hash table, or an associative array.
+ The new trend is to use the term map.

What is Hashing?

+ Accessing an element in an array:
+ Retrieve the element using the index in $\mathrm{O}(1)$ time.
+ Can we use an array as a map?
+ Key: array index
+ Value: array element
+ Need to map a key to an array index.
+ Hash table: array that stores the values
+ Hash function: function that maps a key to an index in the table

Hashing is a technique that retrieves the value using the index obtained from key without performing a search.

Typical Hash Function

Step 1: Convert a search key to an integer value called a hash code. Step 2: Compresses the hash code into an index to the hash table.

Collisions

Collision: two keys map to the same index

Hash function: key\%101

Both 4567 and 7597 map to 22

The Birthday Problem

- What is the minimum number of people so that the probability that at least two of them have the same birthday is greater than $1 / 2$?
- Assumptions:
- Birthdays are independent
- Each birthday is equally likely

The Birthday Problem

- What is the minimum number of people so that the probability that at least two of them have the same birthday is greater than $1 / 2$?
- p_{n} - the probability that all people have different birthdays

$$
p_{n}=1 \frac{365}{366} \frac{364}{366} \cdots \frac{366-(n-1)}{366}
$$

- at least two have same birthday:

$$
n=23 \rightarrow 1-p_{n} \approx 0.506
$$

The Birthday Problem: Probabilities

N: \# of people	P(N): probability that at least two of the N people have the same birthday.
10	11.7%
20	41.1%
23	50.7%
30	70.6%
50	97.0%
57	99.0%
100	99.99997%
200	$99.99999999999999999999999999998 \%$
366	100%

Probability of Collision

\uparrow How many items do you need to have in a hash table, so that the probability of collision is greater than $1 / 2$?
\star For a table of size $1,000,000$ you only need 1178 items for this to happen!

Collisions

Collision: two keys map to the same index

Hash function: key\%101
both 4567 and 7597 map to 22

Methods for Handling Collisions

- Approach 1: Open addressing
- Probe for an empty (open) slot in the hash table
- Approach 2: Restructuring the hash table
- Change the structure of the array table:
- make each hash table slot a collection
- ArrayList, or linked list
- often called separate chaining
- Extendable dynamic hashing

Open addressing

- When colliding with a location in the hash table that is already occupied
- Probe for some other empty, open, location in which to place the item.
- Probe sequence
- The sequence of locations that you examine
- Linear probing uses a constant step, and thus probes
- Loc
- (loc+step) $\%$ size
- (loc+2*step)\%size
- etc.
- We use $\mathbf{s t e p}=\mathbf{1}$ for linear probing examples

Linear Probing, step $=1$

- Use first char. as hash function
- Init: ale, bay, egg, home
- Where to search for
- egg hash code 4
- ink hash code 8

Where to add

- gift	6 empty
- age	0 full, 1 full, 2 empty

Question: During the process of linear probing, if there is an empty spot,
A. Item not found ?
or
B. There is still a chance to find the item?

ale
bay
age
egg
gift
home

Open addressing: Linear Probing

- Deletion:

Empty positions created along a probe sequence could cause the retrieve method to stop, incorrectly indicating failure.

- Resolution:
\downarrow Each position can be in one of three states occupied, empty, or deleted.
\uparrow Retrieve then continues probing when encountering a deleted position.
\uparrow Insert into empty or deleted positions.

Linear Probing (cont.)

+ insert
- bay
- age
- acre
- remove
- bay
- age
- retrieve
- acre

Question: Where does almond go now?

Linear Probing Animation

http://www.cs.armstrong.edu/liang/animation/web/LinearProbing.html

- Clusters can grow and merge into large clusters.
- Affects search, adding, removal.

Quadratic Probing

www.cs.armstrong.edu/liang/animation/web/QuadraticProbing.html
\uparrow Quadratic probing can avoid the clustering problem in linear probing.
\downarrow Linear probing looks at the consecutive cells beginning at index k .
\uparrow Quadratic probing increases the index by j^{2} for $\mathrm{j}=1,2,3, \ldots$
The actual index searched are $\mathrm{k}, \mathrm{k}+1, \mathrm{k}+4, \ldots$

New element with 0	key: 44	For simplicity, only the keys are shown and not the values. Here N is 11 and index $=$ key $\% \mathrm{~N}$.
key 26 to be inserted 1		
2		
	key: 4	
	key: 16	
Quadratic probe 26	key: 28	
an empty cell	.	
4	.	
9		
10	key: 21	

Summary of Linear and Quadratic Probing

- Start at index $k=$ hash(key)
- Increments are independent of the keys
- Incr = step for linear, j^{2} for quadratic
- New index
- Linear probing with step $=1:(k+1) \% \mathrm{~N},(k+2) \% \mathrm{~N}, \ldots$
- Quadratic probing $\mathrm{j}=1:(k+1) \% \mathrm{~N},(k+4) \% \mathrm{~N}, \ldots$
- Both can cause clustering.
- Linear probing is worse
- Quadratic probing can also cause entries to collide in the same sequence (just quadratic instead of linear)

Double Hashing

\uparrow Use a secondary hash function on the keys to determine the increments to avoid the clustering problem.

- Initial index k is calculated by hash function $h(k e y)$.
- Use second hash function $h^{\prime}($ key $)$ to calculate increments
- New index $=\left(k+j * h^{\prime}(k e y)\right) \% \mathrm{~N}$
$-\left(k+h^{\prime}(k e y)\right) \% N,\left(k+2 * h^{\prime}(k e y)\right) \% N,\left(k+3 * h^{\prime}(k e y)\right) \% N, \ldots$

$$
\begin{aligned}
& \text { Example: } \\
& h(\text { key })=\text { key } \% 11 ; \\
& h^{\prime}(\text { key })=7-\text { key } \% 7 ;
\end{aligned}
$$

Double Hashing

https://liveexample.pearsoncmg.com/dsanimation/DoubleHashingeBook.html

Handling Collisions Using Separate Chaining

\checkmark Don't try to find new locations.

- Place all entries with the same hash index into the same location,
\uparrow Each location in the separate chaining scheme is called a bucket.
\checkmark A bucket is a container that holds multiple entries.

Load Factor

- Measures how full a hash table is
$\star \lambda=\frac{\text { number of elements in the hash table }}{\text { number of locations in the hash table }}$
\downarrow Collisions can increase with higher value of λ
- For open addressing schemes:
- λ lies between 0 (empty) and 1 (full)
- Ideal value $=0.5$
\downarrow For separate chaining scheme:
- λ can have any value
- Ideal value $=0.9$

Rehashing

\rightarrow To avoid collisions, when λ reaches a threshold - Create a new larger hash table

- Rehash all the map entries into the new hash table
\uparrow Rehashing is costly and can prevent other operations on the hash table from happening
\star Generally size is doubled upon rehashing
* java.util.HashMap uses a threshold of 0.75

\section*{Implementing Map Using Hashing

\section*{«interface»

«interface»
 MyMap<K, V>

```
+clear(): void
+containsKey(key: K): boolean
```

+containsVa7ue(value: V): boolean

```
+entrySet(): Set<Entry<K, V>>
+get(key: K): V
+isEmpty(): boolean
+keySet(): Set<K>
+put(key: K, value: V): V
+remove(key: K): void
+size(): int
+values(): Set<V>
```

Removes all entries from this map.
Returns true if this map contains an entry for the specified key.

Returns true if this map maps one or more keys to the specified value.
Returns a set consisting of the entries in this map.
Returns a value for the specified key in this map.
Returns true if this map contains no mappings.
Returns a set consisting of the keys in this map.
Puts a mapping in this map.
Removes the entries for the specified key.
Returns the number of mappings in this map.
Returns a set consisting of the values in this map.

MyHashMap<K, V>

+MyHashMap()

+MyHashMap(capacity: int)
+MyHashMap(capacity: int,
loadFactorThreshold: float)

MyMap.Entry<K, V>

```
-key: K
-value: V
```

```
+Entry(key: K, value: V)
+getkey(): K
+getValue(): V
```

Creates an empty map with default capacity 4 and default load factor threshold 0.75 f .
Creates a map with a specified capacity and default load factor threshold 0.75 f .
Creates a map with a specified capacity and load factor threshold.

MyMap

MyHashMap
TestMyHashMap
Run

Implementing Set Using Hashing

MyHashSet<E>
+MyHashSet()
+MyHashSet()
+MyHashMap(capacity: int)
+MyHashMap(capacity: int)
+MyHashMap(capacity: int,
+MyHashMap(capacity: int,
loadFactorThreshold: float)
loadFactorThreshold: float)

Removes all elements from this set.
Returns true if the element is in the set.
Adds the element to the set and returns true if the element is added successfully.
Removes the element from the set and returns true if the set contained the element.
Returns true if this set does not contain any elements.
Returns the number of elements in this set.

Creates an empty set with default capacity 4 and default load factor threshold 0.75 f .
Creates a set with a specified capacity and default load factor threshold 0.75 f .
Creates a set with a specified capacity and load factor threshold.

MySet

MyHashSet

TestMyHashSet

Run

Explanation of MyHashMap and MyHashSet

Sudipto Ghosh and Wim Bohm
CS165
Based on the code in Liang Chapter 27

MyHashMap structure

Entry is a <key, value> pair
Number of slots is a power of 2 for convenience with hashing.

$$
\mathrm{K}_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}}
$$

Initially each entry points to null. There are no buckets.

At some later point in the execution.

Simple hash function

hash(key) = key \& (N-1)
This uses bit-wise operators.
Faster execution than multiplication, division, etc.
Why do we choose this type of hash function?
If N is a power of 2 ,
then this hash will always produce a number between 0 and $\mathrm{N}-1$.
Let's take $\mathrm{N}=8$, so $\mathrm{N}-1=7$.

$$
\begin{aligned}
& \text { Key }=10101011101010111011010101011100 \\
& N-1=0000000000000000000000000000111
\end{aligned}
$$

Key \& (N-1) = $00000000000000000000000000000100=4$

Problem with simple hash function and solution

In the last example, if the last three bits are the same, then the keys will produce the same hash value.
Need a better distribution.
Use the notion of folding.
Use bitwise right shift operator and bitwise exclusive-or operator

$$
\begin{aligned}
& \text { Key = } 1010101110101011,1011010101011100 \\
& \text { Key >> } 16=00000000000000001010101110101011 \\
& \text { Key^(Key >> 16)=10101011101010110001111011110111 }
\end{aligned}
$$

Hash function used in the code

/** Ensure the hashing is evenly distributed */ private static int supplementalHash(int h) \{

$$
h^{\wedge}=(h \ggg 20)^{\wedge}(h \ggg 12) ;
$$

$$
\text { return } \mathrm{h} \wedge(\mathrm{~h} \ggg 7)^{\wedge}(\mathrm{h} \ggg 4) ;
$$

\}
/** Hash function */
private int hash(int hashCode) \{
return supplementalHash(hashCode) \& (capacity - 1);
\}

