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Graph terminology

Vertices/
Nodes

Edges

An edge is incident on the 
two vertices it connects.

Two vertices are adjacent (or 
neighbors)  if they are 
connected by an edge.

The number of neighbors of 
a vertex is its degree.

In a weighted graph the 
edges have a weight (cost, 
length,..)
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Directed graphs

vertices/
nodes

edges

Edge (u, v) goes from vertex u to 
vertex v.

in-degree of a vertex: the number 
of edges pointing into it. 
out-degree of a vertex: the number 
of edges pointing out of it.

G=(V, E)
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Graph definitions

• Path: sequence of nodes (v0..vn)  such that for all i: (vi ,vi+1) is an 
edge. So a path is a sequence of edges ((v0 , v1), (v1 , v2), … (vn-1 , vn)) 
• Path length: number of edges in the path, or sum of weights. 

Simple path: all nodes distinct. 
• Cycle: path with first and last node equal. 

e.g., ((b,c) (c,e) (e,b)) in

• Acyclic graph: graph without cycles.  DAG: directed acyclic graph.
• In a complete graph all nodes in the graph are adjacent, e.g., 

a b c d

e



Adjacency matrix of a graph
A

B C

E

D

mapping of vertex
labels to array 
indices

Label Index
A 0
B 1
C 2
D 3
E 4

0 1 2 3 4
0 0 1 0 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0

Adjacency matrix: n x n matrix with 
entries that indicate if an edge 
between two vertices is present
In a weighted graph the entries are 
the weights

For an undirected graph, 
what would the adjacency 
matrix look like?



Adjacency list for a directed graph

A

B C

E

D

Index Label

0 A

1 B

2 C

3 D

4 E

B    B    
E    
B    D    

A    
B    
C    



Adjacency list for an undirected graph

mapping of vertex
labels to lists of edges

Index Label

0 A

1 B

2 C

3 D

4 E

B    C    

A

B C

E

D

D    
A    D    E    
A    E    
A    B    
B    C    



Graph      A spanning Tree 
from V
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V V

Spanning tree 
covers  all nodes 
reachable from V.  

Not unique



Depth-First Search 
Depth-first search of a graph is like depth first search of a tree, but
here we need to make sure we don’t visit nodes more than once. 
We do this by marking nodes visited or not-visited  (initially: not-visited).
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// Input: G = (V, E) and a starting vertex v
// Output: a DFS spanning tree rooted at v
Tree dfs(vertex v) {
visit v; 
set v visited
for each neighbor w of v
if (w has not been visited) {
set v as the parent for w;
dfs(w);

}
}

Depth-first search builds a 
spanning tree of all of the 
reachable nodes from the 
starting vertex v, using 
marking of the visited 
nodes.



Depth-First Search Example
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Applications of the DFS 
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v Detecting whether a graph is connected. Search the graph 
starting from any vertex. If the number of vertices searched is 
the same as the number of vertices in the graph, the graph is 
connected. Otherwise, the graph is not connected.

v Finding a path between the root and another vertex. 

v Finding connected components. A connected component is a 
maximal connected subgraph in which every pair of vertices 
are connected by a path. 

v Detecting whether there is a cycle in the graph, and finding a 
cycle in the graph. 



Breadth-First Search 

The breadth-first traversal of a graph is like the breadth-
first traversal of a tree.

Breadth-first search, just as Depth-first search, results in 
a spanning tree.

With breadth-first traversal of a tree, the nodes are 
visited level by level, using a queue. First the root is 
visited, then all the neighbors of the root, then the 
neighbors of the neighbors of the root from left to right, 
and so on.
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Breadth-First Search
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// Input: G = (V, E) and a starting vertex v, Output: a BFS tree rooted at v

bfs(vertex v) {

create an empty queue for storing vertices to be visited;

add v into the queue;

mark v visited;

while the queue is not empty {

dequeue a vertex, say u, from the queue

for each neighbor w of u

if w has not been visited {

add w into the queue;

set u as the parent for w; 

mark w visited;

}

}

}



Breadth-First Search Example
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Queue: 0

Queue: 1 2 3

Queue: 2 3 4

isVisited[0] = true

isVisited[1] = true, isVisited[2] = true, 
isVisited[3] = true

isVisited[4] = true



Applications of the BFS 
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v Detecting whether a graph is connected. A graph is connected if 
there is a path between any two vertices in the graph. 

v Detecting whether there is a path between the root and another 
vertex. 

v Finding a shortest path between two vertices. The path between the 
root and any node in the BFS tree is the shortest path between the 
root and the node.

v Finding connected components. A connected component is a 
maximal connected subgraph in which every pair of vertices are 
connected by a  path. 



Precedence Graphs

n In a precedence graph, an edge from x to y indicates x should 
come before y, e.g.:
• prerequisites for a set of courses
• dependences between programs
• set of tasks, e.g. building a car  or a computer   

•A precedence graph is a DAG: directed acyclic graph

•Precedence graphs are also called “dependence graphs”

x precedes y      à y depends on x
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Graphs Describing Precedence
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Batman images are from the book “Introduction to bioinformatics algorithms”



Graphs Describing Precedence

✦We want an ordering of the vertices of the graph that respects 
the precedence relation 
• Example:  An ordering of CS courses

✦The graph must not contain cycles.  WHY?
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CS165

CS220

CS253

CS270

CS314CS320 CS356 CS370CT310 CT320

CS440 CS410CS464

CS163

CS Courses Required for CS and ACT Majors



Topological Sorting of DAGs

✦DAG:  Directed Acyclic Graph
✦Topological sort: listing of nodes such that if (a,b) is 

an edge, a appears before b in the list
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Question: Is a topological sort unique? 



A directed graph without cycles
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a b c

d e f

g
a,g,d,b,e,c,f
a,b,g,d,e,f,c



Topological Sort  Algorithm

✦Modification of DFS:  Traverse tree using DFS starting from 
all nodes that have no predecessor.

✦Add a node to the list when ready to backtrack.
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Topological Sort Algorithm 
List topoSort(Graph theGraph)
// use stack stck and list lst,  push all roots
for (all vertices v in the graph theGraph) 
if (v has no predecessors) 

stck.push(v)
Mark v as visited

// DFS
while (!stck.isEmpty()) 
if (all neigbors of the vertex on top of stck have been visited) 

v = stck.pop()
lst.add(0, v) 

else 
Select an unvisited neighbor u of v on top of the stack
stck.push(u)
Mark u as visited
Set v as parent of u

return lst
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Example
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a b c

d e f

g f ceb dga

fc
e

b
d
g
a



Topological sorting solution
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A B C

D E F

G H

I

1/18
10/15 11/14

12/139/162/17

6/73/8

4/5

Red edges represent spanning tree

A D E B C F G H I


