
Graphs

1

CS2: Data Structures and Algorithms
Colorado State University

Modified slides by Wim Bohm, Sudipto Ghosh and
Russ Wakefield

Graph terminology

Vertices/
Nodes

Edges

An edge is incident on the
two vertices it connects.

Two vertices are adjacent (or
neighbors) if they are
connected by an edge.

The number of neighbors of
a vertex is its degree.

In a weighted graph the
edges have a weight (cost,
length,..)

G=(V, E)

v

u

e

Vertices
Edges

Directed graphs

vertices/
nodes

edges

Edge (u, v) goes from vertex u to
vertex v.

in-degree of a vertex: the number
of edges pointing into it.
out-degree of a vertex: the number
of edges pointing out of it.

G=(V, E)

u

v

e

vertices edges

Graph definitions

• Path: sequence of nodes (v0..vn) such that for all i: (vi ,vi+1) is an
edge. So a path is a sequence of edges ((v0 , v1), (v1 , v2), … (vn-1 , vn))
• Path length: number of edges in the path, or sum of weights.

Simple path: all nodes distinct.
• Cycle: path with first and last node equal.

e.g., ((b,c) (c,e) (e,b)) in

• Acyclic graph: graph without cycles. DAG: directed acyclic graph.
• In a complete graph all nodes in the graph are adjacent, e.g.,

a b c d

e

Adjacency matrix of a graph
A

B C

E

D

mapping of vertex
labels to array
indices

Label Index
A 0
B 1
C 2
D 3
E 4

0 1 2 3 4
0 0 1 0 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0

Adjacency matrix: n x n matrix with
entries that indicate if an edge
between two vertices is present
In a weighted graph the entries are
the weights

For an undirected graph,
what would the adjacency
matrix look like?

Adjacency list for a directed graph

A

B C

E

D

Index Label

0 A

1 B

2 C

3 D

4 E

B B
E
B D

A
B
C

Adjacency list for an undirected graph

mapping of vertex
labels to lists of edges

Index Label

0 A

1 B

2 C

3 D

4 E

B C

A

B C

E

D

D
A D E
A E
A B
B C

Graph A spanning Tree
from V

8

V V

Spanning tree
covers all nodes
reachable from V.

Not unique

Depth-First Search
Depth-first search of a graph is like depth first search of a tree, but
here we need to make sure we don’t visit nodes more than once.
We do this by marking nodes visited or not-visited (initially: not-visited).

9

// Input: G = (V, E) and a starting vertex v
// Output: a DFS spanning tree rooted at v
Tree dfs(vertex v) {
visit v;
set v visited
for each neighbor w of v
if (w has not been visited) {
set v as the parent for w;
dfs(w);

}
}

Depth-first search builds a
spanning tree of all of the
reachable nodes from the
starting vertex v, using
marking of the visited
nodes.

Depth-First Search Example

10

Applications of the DFS

11

v Detecting whether a graph is connected. Search the graph
starting from any vertex. If the number of vertices searched is
the same as the number of vertices in the graph, the graph is
connected. Otherwise, the graph is not connected.

v Finding a path between the root and another vertex.

v Finding connected components. A connected component is a
maximal connected subgraph in which every pair of vertices
are connected by a path.

v Detecting whether there is a cycle in the graph, and finding a
cycle in the graph.

Breadth-First Search

The breadth-first traversal of a graph is like the breadth-
first traversal of a tree.

Breadth-first search, just as Depth-first search, results in
a spanning tree.

With breadth-first traversal of a tree, the nodes are
visited level by level, using a queue. First the root is
visited, then all the neighbors of the root, then the
neighbors of the neighbors of the root from left to right,
and so on.

12

Breadth-First Search

13

// Input: G = (V, E) and a starting vertex v, Output: a BFS tree rooted at v

bfs(vertex v) {

create an empty queue for storing vertices to be visited;

add v into the queue;

mark v visited;

while the queue is not empty {

dequeue a vertex, say u, from the queue

for each neighbor w of u

if w has not been visited {

add w into the queue;

set u as the parent for w;

mark w visited;

}

}

}

Breadth-First Search Example

14

Queue: 0

Queue: 1 2 3

Queue: 2 3 4

isVisited[0] = true

isVisited[1] = true, isVisited[2] = true,
isVisited[3] = true

isVisited[4] = true

Applications of the BFS

15

v Detecting whether a graph is connected. A graph is connected if
there is a path between any two vertices in the graph.

v Detecting whether there is a path between the root and another
vertex.

v Finding a shortest path between two vertices. The path between the
root and any node in the BFS tree is the shortest path between the
root and the node.

v Finding connected components. A connected component is a
maximal connected subgraph in which every pair of vertices are
connected by a path.

Precedence Graphs

n In a precedence graph, an edge from x to y indicates x should
come before y, e.g.:
• prerequisites for a set of courses
• dependences between programs
• set of tasks, e.g. building a car or a computer

•A precedence graph is a DAG: directed acyclic graph

•Precedence graphs are also called “dependence graphs”

x precedes y à y depends on x

16

Graphs Describing Precedence

17
Batman images are from the book “Introduction to bioinformatics algorithms”

Graphs Describing Precedence

✦We want an ordering of the vertices of the graph that respects
the precedence relation
• Example: An ordering of CS courses

✦The graph must not contain cycles. WHY?

18

CS165

CS220

CS253

CS270

CS314CS320 CS356 CS370CT310 CT320

CS440 CS410CS464

CS163

CS Courses Required for CS and ACT Majors

Topological Sorting of DAGs

✦DAG: Directed Acyclic Graph
✦Topological sort: listing of nodes such that if (a,b) is

an edge, a appears before b in the list

20

Question: Is a topological sort unique?

A directed graph without cycles

21

a b c

d e f

g
a,g,d,b,e,c,f
a,b,g,d,e,f,c

Topological Sort Algorithm

✦Modification of DFS: Traverse tree using DFS starting from
all nodes that have no predecessor.

✦Add a node to the list when ready to backtrack.

22

Topological Sort Algorithm
List topoSort(Graph theGraph)
// use stack stck and list lst, push all roots
for (all vertices v in the graph theGraph)
if (v has no predecessors)

stck.push(v)
Mark v as visited

// DFS
while (!stck.isEmpty())
if (all neigbors of the vertex on top of stck have been visited)

v = stck.pop()
lst.add(0, v)

else
Select an unvisited neighbor u of v on top of the stack
stck.push(u)
Mark u as visited
Set v as parent of u

return lst

23

Example

24

a b c

d e f

g f ceb dga

fc
e

b
d
g
a

Topological sorting solution

25

A B C

D E F

G H

I

1/18
10/15 11/14

12/139/162/17

6/73/8

4/5

Red edges represent spanning tree

A D E B C F G H I

