
Expressions and Expression Trees

CS2: Data Structures and Algorithms
Colorado State University

Russ Wakefield, Sudipto Ghosh and Wim Bohm

Infix Expressions

✦ Infix notation places each operator between
two operands for binary operators:

✦ This is the customary way we write math
formulas in most programming languages.

✦ However, we need to specify an order of
evaluation in order to get the correct answer.

CS165: Data Structures and Algorithms –
Spring Semester 2020 2

A	*	x	*	x	+	B	*	x	+	C;	//	quadratic	equation

✦ The evaluation order you may have learned
in math class is named PEMDAS:

✦ Also need to account for unary, logical and
relational operators, pre/post increment, etc.

✦ Java has a similar order of evaluation.

Parentheses →
Exponentiation →
Multiplication, Division →
Addition, Subtraction

Evaluation Order

3
CS165: Data Structures and Algorithms –

Spring Semester 2020

Reminder: Java Precedence
parentheses ()
unary ++ -- + - ~ !
multiplicative * / %
additive + -
shift << >>
relational < > <= >= instanceof
equality == !=
bitwise AND &
bitwise exclusive OR ^
bitwise inclusive OR |
logical AND &&
logical OR ||
ternary conditional ? :
assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

4
CS165: Data Structures and Algorithms –

Spring Semester 2020

Associativity
Operators with same precedence:

* /
and

+ -

are evaluated left to right: 2-3-4 = (2-3)-4

5
CS165: Data Structures and Algorithms –

Spring Semester 2020

Expression Trees

✦ Parsing decomposes source code and builds a
representation that represents its structure.

✦ Parsing generally results in a data structure such
as a tree:

CS165: Data Structures and Algorithms –
Spring Semester 2020 6

A	*	x	*	x	+	B	*	x	+	C

A	x	*	x	*	B	x	*	+	C	+	
//	postfix	version

+
C+

**
* xBx

xA

Infix, Postfix, Prefix Conversion

CS165: Data Structures and Algorithms –
Spring Semester 2020 7

Infix Postfix Prefix Notes

A * B + C / D A B * C D / + + * A B / C D
multiply A and B,

divide C by D,
add the results

A * (B + C) / D A B C + * D / / * A + B C D
add B and C,

multiply by A,
divide by D

A * (B + C / D) A B C D / + * * A + B / C D
divide C by D,

add B,
multiply by A

Expression Trees

CS165: Data Structures and Algorithms –
Spring Semester 2020 8

/ *
+ / \ / \

/ \ * D A +
* / / \ / \

/ \ / \ A + B /
A B C D / \ / \

B C C D

Infix: A*B + C/D A*(B+C)/D A*(B+C/D)
Postfix: A B * C D / + A B C + * D / A B C D / + *
Evaluate Post Order Left to Right
Notice: the deeper in the tree, the higher the precedence

Evaluating expression trees

✦ By postfix traversal:
– Internal node: operator

◆ first evaluate children sub-trees
◆ then evaluate the operator and return result

– Leaf: operand
◆ either identifier: produce current value
◆ or constant: produce value
◆ return result

9
CS165: Data Structures and Algorithms –

Spring Semester 2020

Java support for trees?

✦ Question: Does the Java Collection
framework have support for binary trees?

✦ Answer: No, you have to build your own
trees using the same techniques as with
linked lists.

CS165: Data Structures and Algorithms –
Spring Semester 2020 10

11
CS165: Data Structures and Algorithms –

Spring Semester 2020

Post Order Evaluation of an Integer Expression Tree

private Integer evalBin(String op, Integer left, Integer right){
if(op.equals("+")) return left + right;
if(op.equals("-")) return left - right;
if(op.equals("*")) return left * right;
if(op.equals("/")) return left / right;
else return null;

}
public int postorderEval(TreeNode node){

String token = node.getItem();
if(isOperator(token)){ //internal node
Integer left = postorderEval(node.getLeft());
Integer right = postorderEval(node.getRight());
return evalBin(token, left, right);

} else // leafs are int literals here
return Integer.parseInt(token);

}

Post order evaluation of 3*4+10-2

12
CS165: Data Structures and Algorithms –

Spring Semester 2017

-
/ \
+ 2

/ \
* 10

/ \
3 4

-
/ \
+ 2

/ \
* 10

/ 3 \
3 4

-
/ \
+ 2

/ \
* 10

/ 3 \4
3 4

-
/ \
+ 2

12 / \
* 10

/ 3 \4
3 4

-
/ \
+ 2

12 / \ 10
* 10

/ 3 \4
3 4

-
22 / \

+ 2
12 / \ 10
* 10

/ 3 \4
3 4

-
22 / \2

+ 2
12 / \ 10
* 10

/ 3 \4
3 4

20
-

22 / \2
+ 2

12 / \ 10
* 10

/ 3 \4
3 4

