
8/22/12	

1	

CS200 Algorithms and Data Structures Colorado State University

Part 1.
Recursion as a Problem-Solving

Technique

CS 200 Algorithms and Data Structures

CS200 Algorithms and Data Structures Colorado State University

CS 200 Algorithms and Data Structures
[Fall 2011]

2

CS200 Algorithms and Data Structures Colorado State University

3

Outline
• Backtracking
•  Formal grammars
•  Relationship between recursion and

mathematical induction

CS200 Algorithms and Data Structures Colorado State University

4

Backtracking
•  Problem solving technique that involves

guesses at a solution.

•  Retrace steps in reverse order and try new
sequence of steps

CS200 Algorithms and Data Structures Colorado State University

5

The Eight Queens Problem
Place 8 Queens!
-  No queen can attack
 any other queens.

CS200 Algorithms and Data Structures Colorado State University

6

Q	

Q	

Q	

Q	

Q	

	 1	 	 	 	 	 2	 	 	 	 	 3	 	 	 	 	 4	 	 	 	 	 	 5	 	 	 	 	 6	 	 	 	 	 	 7	 	 	 	 	 8	 	

8/22/12	

2	

CS200 Algorithms and Data Structures Colorado State University

7

Q	

Q	

Q	

Q	

Q	

	 1	 	 	 	 	 2	 	 	 	 	 3	 	 	 	 	 4	 	 	 	 	 	 5	 	 	 	 	 6	 	 	 	 	 	 7	 	 	 	 	 8	 	

CS200 Algorithms and Data Structures Colorado State University

8

Q	

Q	

Q	

Q	

Q	

	 1	 	 	 	 	 2	 	 	 	 	 3	 	 	 	 	 4	 	 	 	 	 	 5	 	 	 	 	 6	 	 	 	 	 	 7	 	 	 	 	 8	 	

CS200 Algorithms and Data Structures Colorado State University

9

Solution with recursion and backtracking
placeQueen (in currColumn:integer)!
if (currColumn > 8) {  

The problem is solved!
} else {!
 while (unconsidered squares exist in currColumn and the!
 problem is unsolved) {!
 Determine if the next square is safe.!
 if (such a square exists){!
! place a queen in the square!
! placeQueens(currColumn+1) // try next column!

 if (no queen safe in currColumn+1) {!
!! remove queen from currColumn and try the next !

 square in that col.!
 } !
 }!
 }!
}!

CS200 Algorithms and Data Structures Colorado State University

10

Outline
•  Backtracking

•  Formal grammars
•  Relationship between recursion and

mathematical induction

CS200 Algorithms and Data Structures Colorado State University

11

Defining Languages

•  Language: A set of strings of symbols from
a finite alphabet.

•  JavaPrograms = {strings w: w is a
syntactically correct Java program}

•  Grammar: the rules of a language
– Determine whether a given string is in the

language
– Language Specifications

CS200 Algorithms and Data Structures Colorado State University

12

Some special symbols
•  x|y means x or y
•  x y means x followed by y
•  <word> means any instance of word that the

definition defines

8/22/12	

3	

CS200 Algorithms and Data Structures Colorado State University

Example
•  Consider the language that the following

grammar defines:
•  < S > = % | < W > | %< S >
•  < W > = xy|x < W > y
•  Write all strings that are in this language

13

CS200 Algorithms and Data Structures Colorado State University

14

Example: Java Identifier
•  A grammar for the language

–  JavaIds = {w: w is a legal Java identifier}

•  Java identifiers are the names of variables,
methods, classes, packages and interfaces
–  Identifier: IdentifierChars but not a Keyword or

BooleanLiterals or NullLiteral	

–  IdentifierChars: JavaLetter or IdentifierChar or

JavaLetterOrDigit	

–  JavaLetter: any Unicode Character that is JavaLetter	

–  JavaDigit: the ASCII digits 0-9	

–  JavaLetterOrDigit: any Unicode Character that is

JavaLetterOrDigit	

–  http://java.sun.com/docs/books/jls/download/
langspec-3.0.pdf	

CS200 Algorithms and Data Structures Colorado State University

15

A Grammar for the Java Identifier

•  <identifierChars> = <JavaLetter>|
<identifierChars><JavaLetter>|
<identifierChars><JavaDigit>|$<identifier>|
_<identifier>

•  <letter> = a|b|…|z|A|B|…|Z
•  <digit> = 0|1|…|9
•  An identifier is a letter, or an identifier followed

by a letter, or an identifier followed by a digit.

CS200 Algorithms and Data Structures Colorado State University

16

Recognition of JavaId

isId(in w: string): boolean!
 if (w is of length 1) {!
 if (w is a letter or $ or _) {!
 return true!
 } else { !
 return false!
 }!
 } else if (the last character of w is a letter or a digit) { !
 return isId(w minus its last character)!
 } else {!
 return false!
 }!

CS200 Algorithms and Data Structures Colorado State University

17

Example with “A2B”
isId(in w: string) : boolean!

 if (w is of length 1)!

 if (w is a letter)!

 return true!

 }else{ return false}!

 }else if (the last character of w is a letter or !

 a digit)!

 { return isId(w minus its last character)!

 }else{!

 return false!

 }!

W	 =	 “A2B”	
isId(“A2B”)	

W	 =	 “A2”	
isId(“A2B”)	

W	 =	 “A2”	
isId(“A2”)	

W	 =	 “A”	
isId(“A”)	

W	 =	 “A”	
isId(“A”)	

TRUE	 TRUE	 TRUE	

CS200 Algorithms and Data Structures Colorado State University

18

Grammar and recursive implementation
of Palindromes

•  Goal

•  A palindrome is a string that reads the same
from left to right as it does from right to left.

Formal	
Grammar	 	

Recursive	
Method	

8/22/12	

4	

CS200 Algorithms and Data Structures Colorado State University

19

Find a Rule to satisfy all the Palindromes
•  Examples: RADAR, RACECAR, MADAM, [A

nut for a jar of Tuna]

•  A palindrome is a string that reads the same
from left to right as it does from right to left.

•  Palindromes = {w: w reads the same left to right
as right to left}

•  If w is a palindrome
– Then w minus its first and last characters is also a

palindrome

CS200 Algorithms and Data Structures Colorado State University

20

More specifically

•  The first and last characters of w are the
same
 AND

•  w minus its first and last characters is a
palindrome

CS200 Algorithms and Data Structures Colorado State University

21

Base cases
•  Empty string is palindrome

•  A string of length 1 is a palindrome

CS200 Algorithms and Data Structures Colorado State University

22

Grammar for the language Palindrome

•  <pal> = empty string | <ch>| a <pal>a|b<pal>b|
…|Z<pal>Z

•  <ch> = a|b|..z|A|B|…|Z

CS200 Algorithms and Data Structures Colorado State University

23

Recursive Method for Recognizing
Palindrome

isPal(in w:string):boolean!
 if (w is an empty string or of length 1) { !
 return true!
 } else if (w’s first and last characters are the !
 same) {!
 return isPal(w minus its first and last !
 characters)!
 } else {!
 return false!
 }!

Example	 	
isPal	 (“RADAR”)	

isPal	 (“ADA”)	

isPal	 (“ADA”)	

isPal	 (“D”)	

isPal	 (“D”)	

TRUE	 TRUE	 TRUE	

CS200 Algorithms and Data Structures Colorado State University

24

Algebraic Expressions
•  Infix

– Every binary operator appears between its
operands

 a + b, a+(b*c), (a+b)*c
•  Prefix

– Operator appears before its operands
 + a b, + a * b c, * + a b c

•  Postfix
– Operator appears after its operands
 a b +, a b c * +, a b + c *

8/22/12	

5	

CS200 Algorithms and Data Structures Colorado State University

Examples
Question 1) - x 3 8 + 6 5
Question 2) + -5 2 x 10 2
Question 3) 3 8 x 6 5 + -
Question 4) 5 2 – 10 2 x +

25

CS200 Algorithms and Data Structures Colorado State University

26

Prefix Expressions

<prefix> = <identifier>|<operator><prefix><prefix>

<operator>= +| - | *| /
<identifier>= a|b|…|z

CS200 Algorithms and Data Structures Colorado State University

27

Recognize Prefix expressions
•  Is the first character of input string an operator?

•  Does the remainder of input string consist of
two consecutive prefix expressions?

CS200 Algorithms and Data Structures Colorado State University

28

Recognize the end of prefix expressions
1:endPre (in first:integer, in last:integer):integer !
2:! if (first < 0 or first > last){return -1}// noprefix!
3:!!ch = character at position first of strExp!
4:! if (ch is identifier){ return first }!
5: else if { ch is an operator} {!
6: firstEnd = endPre(first +1, last)!
7: if (firstEnd > -1) { !
8: return endPre(firstEnd +1, last)!
9: } else {!
10: return -1!
11: }!
12: }else { !
13: return -1!
14: }

CS200 Algorithms and Data Structures Colorado State University

29

Example
•  Trace of endPre (first, last), where strExp is +/

ab-cd

CS200 Algorithms and Data Structures Colorado State University

30

Outline
•  Backtracking
•  Formal grammars
•  Relationship between recursion and

mathematical induction

8/22/12	

6	

CS200 Algorithms and Data Structures Colorado State University

CS 200 Algorithms and Data Structures
[Fall 2011]

31

CS200 Algorithms and Data Structures Colorado State University

Mathematical Induction in Dominos
•  We have N dominos.
•  If we push the 1st domino, will N dominos fall?

– We should show:
•  If we push the 1st one, it falls
•  For all of dominos, if the previous domino falls, next domino

falls

•  Process:
– Show something works the first time
– Assume that it works for this time
– Show it will work for the next time, under the

assumption
– Conclusion, it works all the time

32

CS200 Algorithms and Data Structures Colorado State University

33

Principle of Mathematical Induction
•  To prove that P(n) is true for all positive integers

n, where P(n) is a propositional function,
•  Two parts of mathematical induction

– Basis step: verify that P(1) is true
–  Inductive step: Show that the conditional statement

P(k)P(k+1) is true for all (positive, or non-
negative) integers k.

•  P(n): Propositional function
•  P(k): Inductive hypothesis

CS200 Algorithms and Data Structures Colorado State University

Example
•  Use mathematical induction to show that,

1+2+3+ … + n = n(n+1)/2
for all positive integer n.

34

Ques&on	 1.	 What	 is	 the	
proposiMonal	 funcMon	 here?	

Ques&on	 2.	 What	 is	 the	
inducMve	 hypothesis?	

CS200 Algorithms and Data Structures Colorado State University

35

Recursion
•  Specifies a solution to one or more base cases

•  Then demonstrates how to derive the solution
to a problem of an arbitrary size
– From the smaller size of the same problem.

CS200 Algorithms and Data Structures Colorado State University

36

Mathematical Induction

•  Proves a property about the natural numbers by
– Proving the property about a base case and
– Then proving that the property must be true for an

arbitrary natural N if it is true for the natural number
smaller than N.

•  In this section, we will use MI to prove:
–  (1) correctness of the recursive algorithm
–  (2) deriving the amount of recursive work it

requires

8/22/12	

7	

CS200 Algorithms and Data Structures Colorado State University

37

(1) Correctness of the Recursive Factorial
Method

SpecificaMon	 of	 the	
problem	

(e.g.	 MathemaMcal	
definiMon,	 SW	
requirements)	

Algorithm	
(e.g.	 pseudo	 code)	

Does	 your	 algorithm	 saMsfy	 the	 specificaMon	 of	 the	 problem?	

CS200 Algorithms and Data Structures Colorado State University

38

(1) Correctness of the Recursive Factorial
Method

Definition of Factorial
 factorial(n) = n (n – 1) (n – 2) … 1 for any integer n > 0

 factorial(0) = 1

Definition of method fact(N)
 1: fact (in n: integer): integer!

2: if (n is 0) {!
3: return 1!
4: } else {!
5: return n* fact(n-1)!
6: }!

CS200 Algorithms and Data Structures Colorado State University

39

Prove that the method fact computes the
factorial of its arguments

Basis step:
: fact(0) = 1
Inductive Step:
Show that for an arbitrary positive integer k, if fact

(k) returns k!, fact(k+1) returns (k+1)!
Assume that, fact(k) = k (k-1) (k-2) … 2 1
For n = k+1,
Show that fact(k+1) returns (k+1) k (k-1) (k-2) … 2 1

CS200 Algorithms and Data Structures Colorado State University

40

(2) Deriving the amount of recursive work
•  The Towers of Hanoi Example
•  Only one disk may be moved at a time.
•  No disk may be placed on top of a smaller disk.

CS200 Algorithms and Data Structures Colorado State University

41

States in the Towers of Hanoi

Source	 DesMnaMon	 Spare	

CS200 Algorithms and Data Structures Colorado State University

42

Recursive Solution

solveTowers (in count: integer, in source: Pole, in
destination: Pole, in spare:Pole)!

 if (count is 1) {!

 Move a disk directly from source to destination!

 } else{!

 solveTowers(count-1, source, spare, destination)!

 solveTowers(1, source, destination, spare)!

 solveTowers(count-1, spare, destination, source)!

 }!

8/22/12	

8	

CS200 Algorithms and Data Structures Colorado State University

43

Example with 3 disks

SolveTower(3,A,B,C)	

SolveTower(2,A,C,B)	 SolveTower(1,A,B,C)	 SolveTower(2,C,B,A)	

SolveTower(1,A,B,C)	

SolveTower(1,A,C,B)	

SolveTower(1,B,C,A)	

SolveTower(1,C,A,B)	

SolveTower(1,C,B,A)	

SolveTower(1,A,B,C)	

CS200 Algorithms and Data Structures Colorado State University

44

Cost of Towers of Hanoi
•  If we have N disks, how many moves does

solveTowers() make to solve the problem?
•  From the software
 moves(1) = 1
 move(N) = move(N-1)+1+move(N-1) (if N>1)

•  A closed form formula for the number of moves
that solveTowers requires for N disks:
 moves(N) = 2N - 1 (for all N>=1)

•  Is this true for the solveTowers() method with
N disks?

CS200 Algorithms and Data Structures Colorado State University

45

Proof
•  Basis Step

– Show that the property is true for N = 1.
 21 - 1 = 1, which is consistent with the recurrence
relation’s specification that moves(1) = 1

•  Inductive Step
– Property is true for an arbitrary k property is true

for k+1
– Assume that the property is true for N = k
 moves(k) = 2k-1
– Show that the property is true for N = k + 1

CS200 Algorithms and Data Structures Colorado State University

46

Proof – cont.
•  moves(k+1) = 2 * moves(k) + 1

 = 2 * (2k -1) +1
 = 2k+1 -1
Therefore the inductive proof is complete.

CS200 Algorithms and Data Structures Colorado State University

47

Readings for next class
•  Stacks

