Part 1.
Recursion as a Problem-Solving Technique

CS 200 Algorithms and Data Structures


## Outline

- Backtracking
- Formal grammars
- Relationship between recursion and mathematical induction


## Backtracking

- Problem solving technique that involves guesses at a solution.
- Retrace steps in reverse order and try new sequence of steps




| Solution with recursion and backtracking```placeQueen (in currColumn:integer) if ( currColumn > 8) { The problem is solved } else { while (unconsidered squares exist in currColumn and the problem is unsolved) { Determine if the next square is safe. if (such a square exists){ place a queen in the square placeQueens(currColumn+1) // try next column if (no queen safe in currColumn+1) { remove queen from currColumn and try the next square in that col. } } } }``` |
| :---: |
|  |  |



## Outline

- Backtracking
- Formal grammars
- Relationship between recursion and mathematical induction
Defining Languages
- Language: A set of strings of symbols from
a finite alphabet.
- JavaPrograms = \{strings $w: w$ is a
syntactically correct Java program $\}$
- Grammar: the rules of a language
- Determine whether a given string is in the
language
- Language Specifications


## Some special symbols

- $x \mid y$ means $x$ or $y$
- $x y$ means $x$ followed by $y$
- <word> means any instance of word that the definition defines
Example
- Consider the language that the following
grammar defines:
$-<S>=\%|<W>| \%<S>$
- $<W>=x y \mid x<W>y$
- Write all strings that are in this language


## Example: Java Identifier

- A grammar for the language
- Javalds $=\{w: w$ is a legal Java identifier $\}$
- Java identifiers are the names of variables, methods, classes, packages and interfaces
- Identifier: IdentifierChars but not a Keyword or BooleanLiterals or NullLiteral
- IdentifierChars: JavaLetter or IdentifierChar or JavaLetterOrDigit
- JavaLetter: any Unicode Character that is JavaLetter
- JavaDigit: the ASCII digits 0-9
- JavaLetterOrDigit: any Unicode Character that is JavaLetterOrDigit
- http://java.sun.com/docs/books/jls/download/ langspec-3.0.pdf


## A Grammar for the Java Identifier

- <identifierChars> = <JavaLetter $>\mid$
<identifierChars><JavaLetter>
<identifierChars><JavaDigit>|\$<identifier>|
_<identifier>
- <letter> $=\mathrm{a}|\mathrm{b}| \ldots|\mathrm{z}| \mathrm{A}|\mathrm{B}| \ldots \mid \mathrm{Z}$
- <digit> = $0|1| \ldots \mid 9$
- An identifier is a letter, or an identifier followed by a letter, or an identifier followed by a digit.


Find a Rule to satisfy all the Palindromes

- Examples: RADAR, RACECAR, MADAM, [A nut for a jar of Tuna]
- A palindrome is a string that reads the same from left to right as it does from right to left.

Palindromes $=\{w$ : $w$ reads the same left to right as right to left\}

- If $w$ is a palindrome
- Then $w$ minus its first and last characters is also a palindrome
Base cases
- Empty string is palindrome
- A string of length $\mathbf{1}$ is a palindrome

Grammar for the language Palindrome

- <pal> = empty string $|<c h>| a<$ pal $>a|b<p a l>b|$ ...|Z<pal>Z
- $\langle c h\rangle=a| ||. . z| A|B| \ldots \mid Z$



## Algebraic Expressions

- Infix
- Every binary operator appears between its operands $a+b, a+\left(b{ }^{*} c\right),(a+b)^{*} c$
- Prefix
- Operator appears before its operands $+\mathrm{ab},+a * b c, *+a b c$
- Postfix
- Operator appears after its operands
$a b+, a b c^{*+}, a b+c^{*}$


Prefix Expressions

```
<prefix> = <identifier> \<operator><prefix><prefix>
<operator>= +|- | *|/
<identifier>=a|b|...|
```


## Recognize Prefix expressions

- Is the first character of input string an operator?
- Does the remainder of input string consist of two consecutive prefix expressions?

Recognize the end of prefix expressions

1:endPre (in first:integer, in last:integer):integer
2: if (first < 0 or first > last)\{return -1\}// noprefix
3: ch = character at position first of strExp
if (ch is identifier) \{ return first \}
else if \{ ch is an operator\} \{
firstEnd $=$ endPre(first +1 , last)
if (firstEnd > -1) \{
return endPre(firstEnd +1, last)
\} else \{ return -1
\}
\}else \{
return -1
\}


## Principle of Mathematical Induction <br> - To prove that $P(n)$ is true for all positive integers $n$, where $P(n)$ is a propositional function, <br> - Two parts of mathematical induction <br> - Basis step: verify that $P(1)$ is true <br> - Inductive step: Show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all (positive, or nonnegative) integers $k$. <br> - $\mathrm{P}(\mathrm{n})$ : Propositional function <br> - $\mathrm{P}(\mathrm{k})$ : Inductive hypothesis

Recursion

- Specifies a solution to one or more base cases
- Then demonstrates how to derive the solution
to a problem of an arbitrary size
- From the smaller size of the same problem.


## Mathematical Induction

- Proves a property about the natural numbers by
- Proving the property about a base case and
- Then proving that the property must be true for an arbitrary natural $N$ if it is true for the natural number smaller than $N$.
- In this section, we will use MI to prove:
- (1) correctness of the recursive algorithm
- (2) deriving the amount of recursive work it requires


Prove that the method fact computes the factorial of its arguments

## Basis step:

: $\operatorname{fact}(0)=1$
Inductive Step:
Show that for an arbitrary positive integer $k$, if fact (k) returns $k$ !, fact $(k+1)$ returns $(k+1)$ !

Assume that, $\operatorname{fact}(k)=k(k-1)(k-2) . . .21$
For $n=k+1$,
Show that fact $(k+1)$ returns $(k+1) k(k-1)(k-2) . . .21$

## (1) Correctness of the Recursive Factorial Method

## Definition of Factoria

factorial $(n)=n(n-1)(n-2) \ldots 1$ for any integer $n>0$ factorial $(0)=1$

## Definition of method $\operatorname{fact}(N)$

1: fact (in $n$ : integer): integer
2: if ( n is 0 ) \{ return 1
\} else \{
return $n$ * $\operatorname{fact}(\mathrm{n}-1)$
\}
(2) Deriving the amount of recursive work

- The Towers of Hanoi Example
- Only one disk may be moved at a time.
- No disk may be placed on top of a smaller disk.




## Recursive Solution

solveTowers (in count: integer, in source: Pole, in destination: Pole, in spare: Pole)
if (count is 1) \{
Move a disk directly from source to destination \} else\{
solveTowers(count-1, source, spare, destination)
solveTowers(1, source, destination, spare)
solveTowers(count-1, spare, destination, source) \}

Proof

- Basis Step
- Show that the property is true for $\mathrm{N}=1$.
$2^{1}-1=1$, which is consistent with the recurrence
relation's specification that moves $(1)=1$
- Inductive Step
- Property is true for an arbitrary $k \rightarrow$ property is true
for $k+1$
- Assume that the property is true for $\mathrm{N}=\mathrm{k}$
moves $(k)=2^{k}-1$


## Proof

Basis Step

- Show that the property is true for $\mathrm{N}=1$.
$2^{1}-1=1$, which is consistent with the recurrence relation's specification that moves $(1)=1$
- Inductive Step

Property is true for an arbitrary $k \rightarrow$ property is true for $k+1$

Assume that the property is true for $\mathrm{N}=\mathrm{k}$
Show that the property is true for $N=k+1$

## Cost of Towers of Hanoi

- If we have N disks, how many moves does solveTowers() make to solve the problem?
- From the software

$$
\begin{aligned}
& \operatorname{moves}(1)=1 \\
& \operatorname{move}(N)=\operatorname{move}(N-1)+1+\operatorname{move}(N-1)(\text { if } N>1)
\end{aligned}
$$

- A closed form formula for the number of moves that solveTowers requires for N disks:
$\operatorname{moves}(N)=2^{N}-1($ for all $N>=1$ )
- Is this true for the solveTowers() method with N disks?
- Stacks | Readings for next class |
| :--- |
|  |
|  |
|  |
|  |
|  |
|  |

