
 CS200: Stacks

n  Prichard Ch. 7

CS200 - Stacks 1

Linear, time-ordered structures

n  Two data structures that reflect a temporal
relationship
q  order of removal based on order of insertion

n  We will consider:
q  “first come,first serve”

n  first in first out - FIFO (queue)
q  “take from the top of the pile”

n  last in first out - LIFO (stack)

CS200 - Stacks 2

3 CS200 - Stacks

Stacks or queues?

What can we do with coin dispenser?

n  “push” a coin into the dispenser.
n  “pop” a coin from the dispenser.

n  “peek” at the coin on top, but don’t pop it.
n  “isEmpty” check whether this dispenser is

empty or not.

4 CS200 - Stacks

Stacks

n  Last In First Out (LIFO) structure
q  A stack of dishes in a cafe

n  Add/Remove done from same
end: the top 5

4
3
2
1

top

CS200 - Stacks 5

Possible Stack Operations

n  isEmpty(): determine whether stack is empty

n  push(): add a new item to the stack
n  pop(): remove the item added most recently
n  peek(): retrieve, but don’t remove, the item

added most recently

6 CS200 - Stacks

Checking for balanced braces

n  How can we use a stack to determine
whether the braces in a string are balanced?

 abc{defg{ijk}{l{mn}}op}qr

abc{def}}{ghij{kl}m

CS200 - Stacks 7

Pseudocode

while (not at the end of the string){
 if (the next character is a “{“){
 aStack.push(“{“)
 }
 else if (the character is a “}”) {
 if(aStack.isEmpty()) ERROR!!!
 else aStack.pop()
 }
}
if(!aStack.isEmpty()) ERROR!!!

8

question

n  Could you use a single int to do the same job?

n  How?

CS200 - Stacks 9

Try it on
 abc{defg{ijk}{l{mn}}op}qr {st{uvw}xyz}

abc{def}}{ghij{kl}m

Expressions
n  Types of Algebraic Expressions

q  Prefix
q  Postfix
q  Infix

n  Prefix and postfix are easier to
parse. No ambiguity. Infix requires
extra rules: precedence and
associativity. What are these?

n  Postfix: operator applies to the
operands that immediately precede
it.

n  Examples:
1.  - 5 * 4 3
2.  5 - 4 * 3
3.  5 4 3 * -

CS200 - Stacks 10

What type of expression is “5 4 3 – *”?

A.  Prefix
B.  Infix
C.  Postfix
D.  None of the above (i.e., illegal)

CS200 - Stacks 11

What type of expression is “5 * 4 3 –”?

A.  Prefix
B.  Infix
C.  Postfix
D.  None of the above (i.e., illegal)

CS200 - Stacks 12

Evaluating a Postfix Expression

while there are input tokens left
read the next token
if the token is a value
 push it onto the stack.
else
 //the token is a operator taking n arguments
 pop the top n values from the stack and perform the operation
 push the result on the stack

If there is only one value in the stack return it as the result
else
throw an exception

CS200 - Stacks 13

Quick check

n  If the input string is “5 3 + 2 *”, which of the
following could be what the stack looks like
when trying to parse it?

CS200 - Stacks 14

2
3
5

+
3
5

2
8

A B C

Stack Interface
push(StackItemType newItem)

q  adds a new item to the top of the stack

StackItemType pop() throws StackException
q  deletes the item at the top of the stack and returns it
q  Exception when deletion fails

StackItemType peek() throws StackException
q  returns the top item from the stack, but does not remove it
q  Exception when retrieval fails

boolean isEmpty()
q  returns true if stack empty, false otherwise

Preconditions? Postconditions?

CS200 - Stacks 15

Comparison of Implementations

n  Options for Implementation:
q  Array based implementation
q  Array List based implementation
q  Reference based implementation

n  What are the advantages and disadvantages of
each implementation?

n  Let’s look at a Linked List based implementation
n  In P1 you program an Array List based

implementation

CS200 - Stacks 16

Stacks and Recursion

n  Most implementations of recursion maintain a
stack of activation records, called

 the Run Time Stack

n  Activation records, or Stack Frames, contain
(amongst other things) parameters and local
variables of the method called

n  Within recursive calls, the most recently
executed activation record is stored at the top of
the stack.

 17

Applications - the run-time stack

n  Nested method calls tracked on

call stack (aka run-time stack)
q  First method that returns is the last one

invoked
n  Element of call stack - activation

record or stack frame
q  parameters
q  local variables
q  return address: pointer to next

instruction to be executed in calling
method

http://en.wikipedia.org/wiki/Image:Call_stack_layout.svg CS200 - Stacks 18

Factorial example

 int factorial(n){
 // pre n>=0
 // post return n!
 if(n==0) { r=1; return r;}
 else {r=n*factorial(n-1); return r;}
 }

CS200 - Stacks 19

RTS factorial(3): wind phase

CS200 - Stacks 20

n=3, r=? n=3, r=?

n=2, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=3, r=?

n=2, r=?

n=1, r=?

n=0, r=1

only active frame: top of the run time stack

RTS factorial(3): unwind phase

CS200 - Stacks 21

n=3, r=6 n=3, r=?

n=2, r=2

n=3, r=?

n=2, r=?

n=1, r=1

return 6

22

More complex example:
 The Towers of Hanoi
n  Move pile of disks from source to destination
n  Only one disk may be moved at a time.
n  No disk may be placed on top of a smaller disk.

CS200 - Recursion

23

Moves in the Towers of Hanoi

Source Destination Spare
CS200 - Recursion

24

Recursive Solution

CS200 - Recursion

// pegs are numbers, via is computed
// f: source peg, t: dest peg, v: via peg
// state corresponds to return address
public void hanoi(int n, int f, int t){
 if (n>0) {
 // state 0
 int v = 6 - f - t;
 hanoi(n-1,f, v);
 // state 1
 System.out.println("move disk " + n + " from " + f + " to " + t);
 hanoi(n-1,v,t);
 // state 2
 }
}

Run time stack for hanoi(3,1,3)

CS200 - Stacks 25

0:n=3,f=1,t=3 1:n=3,f=1,t=3
0:n=2,f=1,t=2

1:n=3,f=1,t=3
1:n=2,f=1,t=2
0:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3
0:n=0,f=1,t=2

if (n>0) {
 // state 0
 int v = 6 - f - t;
 hanoi(n-1,f, v);
 // state 1
 System.out.println("move disk " + n +
 “ from" + f + " to" + t);
 hanoi(n-1,v,t);
 // state 2
 }

only active frame:
 top of the run time stack

Run time stack for hanoi(3,1,3)

CS200 - Stacks 26

1:n=3,f=1,t=3
1:n=2,f=1,t=2
1:n=1,f=1,t=3

 if (n>0) {
 // state 0
 int v = 6 - f - t;
 hanoi(n-1,f, v);
 // state 1
 System.out.println("move disk " + n +
 “ from" + f + " to" + t);
 hanoi(n-1,v,t);
 // state 2
 }

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3

1:n=3,f=1,t=3
1:n=2,f=1,t=2
2:n=1,f=1,t=3

 0:n=0,f=2,t=3

System.out:

1:n=3,f=1,t=3
1:n=2,f=1,t=2

“move disk 1 from 1 to 3”
“move disk 2 from 1 to 2”

etcetera

Hanoi with explicit run time stack
n  In Programming Assignment 1 you will create a

Hanoi program with an explicit run time stack rts.

n  The main loop of the program is:
 while(rts not empty){
 pop frame
 check frame state
 perform appropriate actions, including pushing frames
 }

CS200 - Stacks 27

