
Recap: Question 1

If passwords are strings starting with an uppercase letter
and ending in a single digit and characters in between may
be either letters or numbers, how many passwords of
length 4 are there?

CS200 - Grammars 1

Recap: Question 2

When writing a method called add(String s, int pos) to
add a data element of type String to the pos entry in a
singly linked list, what cases should be handled in the
code?

CS200 - Grammars 2

CS200 - Grammars 3

Recap Question 3

n  Legal? int a = 5 + (int b = 4);
n  Spot the bugs:

double [] scores = {50.2, 121.0, 35.03, 14.27};
double mine;
for (int in = 1; in = 4; ++in) {

mine = mine + scores[in]; }
n  What does this do when called with abc(scores,4):

public double abc(double anArray[], int x) {
if (x == 1) { return anArray[0];}
else { return anArray[x-1] * abc(anArray, x-1); }}

Grammars: Defining
Languages

Walls & Mirrors Ch. 6.2
Rosen Ch. 13.1

CS200 - Grammars 4

Language, grammar

n  Postfix expressions form a language: a set of valid
strings (“sentences”), so do infix expressions

n  In order to manipulate these sentences we need to
know which strings are valid sentences (belong to
the language)

n  To define the valid sentences we need a
mechanism to construct them: grammars

n  A grammar defines a set of valid symbols and a
set of production rules to create sentences out of
symbols.

CS200 - Class Overview 5

Arithmetic Postfix expressions: symbols
n  Symbols: integer numbers and operators
 int : digit sequence
n  There are many mechanisms to define a digit sequence, e.g.

regular grammars, or regular expressions:
 dig: “0”|”1”|”2”|”3”|”4”|”5”|”6”|”7”|”8”|”9”
 num: dig+

n  operator: “+” | “-” | “*” |”/”

| stands for: OR (choice)
+ stands for: 1 or more of these (repetition)
 don’t confuse the META symbols | + with the language
 symbols “+”, “-”, …

CS200 - Class Overview 6

what does
* stand for?

Arithmetic Postfix expressions
n  An arithmetic postfix expression is
 a number, or
 two arithmetic postfix expressions followed by an
 operator
Notice that the operators in this example are binary
n  The mechanism (context free grammar) to describe

this needs more than choice and repetition, it also
needs to be able to describe (block) structure

 APFE ::= num | APFE APFE operator
Notice that context free grammars are recursive in nature.

 CS200 - Class Overview 7

Quick check

Which are valid APFEs:
 a b +
 1 2 3 * +
 1 2 3 + *
 1 2 * + 3
 11 22 – 33 + 44 *

If valid, what is their corresponding infix
expression?

CS200 - Class Overview 8

Parsing

5 3 8 4

-

+

* 5 * 3 + (8 - 4)

1. Recognize the structure of the expression
 terminology: PARSE the expression

2. Build the tree (while parsing)

CS200 - Grammars 9

Definitions

n  Language is a set of strings of symbols from a finite
alphabet.
 JavaPrograms = {string w : w is a syntactically

 correct Java program}

n  Grammar is a set of rules that construct valid
strings (sentences).

n  Parsing Algorithm determines whether a string is a
member of the language.

CS200 - Grammars 10

what is the alphabet for APFEs?

Basics of Grammars
Example: a Backus-Naur form (BNF) for identifiers

<identifier> = <letter> | <identifier> <letter> |
 <identifier> <digit>

<letter> = a | b | …| z | A | B | … | Z
<digit> = 0 | 1 | … | 9

n  x | y means “x or y”
n  x y means “x followed by y”
n  <word> is called a non-terminal, which can be replaced by other

symbols depending on the rules.
n  Terminals are symbols (e.g., letters, words) from which legal strings

are constructed.
n  Rules have the form <word> = …

 This is called Context Free, because where-ever <word> occurs it can
be replaced by one of its right hand sides.

CS200 - Grammars 11

Identifier grammar

<identifier> = <letter> | <identifier> <letter> |
 <identifier> <digit> |

<letter> = a | b | …| z | A | B | … | Z
<digit> = 0 | 1 | … | 9

Use all the alternatives of <identifier> to make 5 different shortest
possible identifiers

CS200 - Grammars 12

Example

Consider the language that the following grammar defines:
 <W> = xy|x <W> y

Write strings that are in this language, which ones are
right / wrong?
 A. xy
 B. xy, xxyy
 C. xy, xyxy, xyxyxy, xyxyxyxy ….
 D. xy, xxyy, xxxyyy, xxxxyyyy ….
Can you describe the language in English?

13 CS200 - Grammars

Formally: Phrase-Structure Grammars

A phrase-structure grammar G=(V,T,S,P) consists of a
vocabulary V, a subset T of V consisting of terminal
elements, a start symbol S from V, and a finite set of

productions P.
n  Example: Let G=(V,T,S,P) where V={0,1,A,S}, T={0,1}, S

is the start symbol and P={S->AA, A->0, A->1}.
The language generated by G is the set of all strings of terminals

that are derivable from the starting symbol S, i.e.,

€

L(G) = w∈T* | S⇒
*
w$

%
&

'
(
)

CS200 - Grammars 14

Example as Phrase Structure
BNF: <W> = xy|x <W> y
V={x, y, W}
T={x,y}
S=W
P={W->xy, W->xWy}
Derivation:
Starting with start symbol, applying productions, by
replacing a non-terminal by a rhs alternative, to obtain a
legal string of terminals:
e.g., W->xWy, W->xxyy

15 CS200 - Grammars

Derivation

V={x, y, W}
T={x,y}
S=W
P={W->xy, W->xWy}

Derive:
 xy
 xxxyyy

CS200 - Grammars 16

Types of Phrase-Structure
Grammars
n  Type 0: no restrictions on productions
n  Type 1 (Context Sensitive): productions such that

w1 -> w2, where w1=lAr, w2=lwr, A is a nonterminal, l and r
(called “the context”) are strings of 0 or more terminals or
nonterminals and w is a nonempty string of terminals or
nonterminals. A can now only derive w in the right
context l r.

n  Type 2 (Context Free): productions such that
w1->w2 where w1 is a single nonterminal including S, and
w2 a sequence of terminals and nonterminals
Equivalent to BNF

CS200 - Grammars 17

Type 3: Regular Languages

n  A language generated by a type 3 (regular) grammar can
have productions only of the form A->aB or A->a where A
& B are non-terminals and a is a terminal.

n  Notice that A->x A is repetition (tail recursion) and
 A-> aB and A -> cD and A -> x is choice

n  Regular expressions are equivalent to regular grammars

CS200 - Grammars 18

Type 3: Regular Expressions
n  Regular expressions are equivalent to regular grammars
n  Regular expressions are defined recursively over a set I:

q  is the empty set { }
q  λ is the set containing the empty string { “” }
q  x whenever x ε I is the set { x }
q  (AB) concatenates any element of set A and any element of set B
q  (A U B) or (A | B) is the union of sets A and B
q  A* is 0 or more repetitions of elements in A
q  A+ is 1 or more repetitions of elements in A

n  Example: 0(0 | 1)*
n  Regular expression notation (…) (…)* (…)+ is often used in context free

grammars as well (nice notation).
n  Java has implementations of regular expressions.

€

∅

CS200 - Grammars 19

Identifiers
A grammar for identifiers:

<identifier> = <letter> | <identifier> <letter> |
 <identifier> <digit>

<letter> = a | b | …| z | A | B | … | Z
<digit> = 0 | 1 | … | 9

Notation [a-z] stands for a | b | …| z

n  How do we determine if a string w is a valid Java
identifier, i.e. belongs to the language of Java
identifiers?

CS200 - Grammars 20

Recognizing Java Identifiers
isId(in w:string):boolean
 if (w is of length 1)
 if (w is a letter)
 return true
 else
 return false
 else if (the last character of w is a letter

 or a digit)
 return isId(w minus its last character)
 else
 return false

// or you could check is_letter(first) and
// is_letter_or digit_sequence(rest) in a loop
// going left to right through the input

CS200 - Grammars 21

Prefix Expressions

n  Grammar for prefix expression (e.g., * - a b c):

<prefix> = <identifier> | <operator> <prefix> <prefix>
<operator> = + | - | * | /
<identifier> = a | b | … | z

or
<identifier> = [a-z]|[A-Z]

CS200 - Grammars 22

Recognizing Prefix Expressions
Top Down

Grammar:
<prefix> = <identifier> | <operator> <prefix> <prefix>
<operator> = + | - | * | /
<identifier> = a | b | … | z

Given “* - a b c”
1.  <prefix>
2.  <operator> <prefix> <prefix>
3.  * <prefix> <prefix>
4.  * <operator> <prefix> <prefix> <prefix>
5.  * - <prefix> <prefix> <prefix>
6.  * - <identifier> <prefix> <prefix>
7.  * - a <prefix> <prefix>

8.  * - a <identifier> <prefix>
9.  * - a b <prefix>
10.  * - a b <identifier>
11.  * - a b c

CS200 - Grammars 23

Recognizing Prefix Expressions
boolean prefix() {	
	if (identifier()) { // rule <prefix> = <identifier>	
	 	return true; 	
	}	
	else { //<prefix> = <operator> <prefix> <prefix>	

 	if (operator()) {	
 	 	if (prefix()) {	
 	 	 	if (prefix()) {	
 	 	 	 	return true;	
 	 	 	}	
 	 	 	else { return false;}	
 	 	 	}	
 	 	else { return false;}	
 	 	}	
 	else { return false; }	
 } 	
}	
// notice that reading and advancing the characters is left out	
// you will play with this in recitation	

CS200 - Grammars 24

Postfix Expressions

n  Grammar for postfix expression (e.g., a b c * +):
<postfix> = <identifier> | <postfix> <postfix> <operator>
<operator> = + | - | * | /
<identifier> = [a-z]

CS200 - Grammars 25

Recognizing a b c *+

 Do it do it

 <postfix>
 <postfix> <postfix> <operator>
 <identifier> <postfix> <operator>
 a <postfix> <operator>
 a <postfix> <postfix> <operator> <operator>
 a <identifier> <postfix> <operator> <operator>
 a b <postfix> <operator> <operator>
 a b <identifier> <operator> <operator>
 a b c <operator> <operator>
 a b c * <operator>
 a b c * +

CS200 - Grammars 26

what does red mean?
which non terminal is replaced?

We have already
seen a different
way of recognizing
and evaluating
postfix expr-s, using
a stack.

Palindromes
Palindromes = {w : w reads the same left to right as right to

left, when spaces and special characters are ignored,
and uppercase is translated to lower case}

Examples: RADAR, racecar, [A nut for a jar of tuna],
[Madam, I’m Adam], [Sir, I’m Iris]

Recursive definition:
w is a palindrome if and only if

 the first and last characters of w are the same
And

 w minus its first and last characters is a palindrome

Base case(s)?

CS200 - Grammars 27

Grammar for Palindromes

<pal> = empty string | <ch> | a <pal> a | … | Z <pal> Z

<ch> = [a-z]|[A-Z]

CS200 - Grammars 28

Why not
<ch><pal><ch>?

29

Recursive Method for Recognizing
Palindrome
isPal(in w:string):boolean!
 if (w is an empty string or of length 1) { !
 return true!
 } else if (w’s first and last characters are the !
 same) {!
 return isPal(w minus its first and last !
 characters)!
 } else {!
 return false!
 }!

30

Recursive Method for Recognizing
Palindrome
isPal(in w:string):boolean!
 if (w is an empty string or of length 1) { !
 return true!
 } else if (w’s first and last characters are the !
 same) {!
 return isPal(w minus its first and last !
 characters)!
 } else {!
 return false!
 }!

Example
isPal

(“RADAR”)
isPal (“ADA”) isPal (“D”)

TRUE TRUE TRUE

