
Computational Complexity,
Orders of Magnitude

n  Rosen Ch. 3.2: Growth of Functions
n  Rosen Ch. 3.3: Complexity of Algorithms
n  Prichard Ch. 10.1: Efficiency of Algorithms

1 CS200 - Complexity

Algorithm and Computational
Complexity
n  An algorithm is a finite sequence of precise

instructions for performing a computation for
solving a problem.

n  Computational complexity measures the
processing time and computer memory
required by the algorithm to solve problems
of a particular problem size.

2 CS200 - Complexity

Time Complexity of an Algorithm

How do we measure the complexity (time, space) of an
algorithm? What is this a function of?

n  The size of the problem: an integer n
n  # inputs (e.g., for sorting problem)
n  # digits of input (e.g., for the primality problem)
n  sometimes more than one integer

n  We want to characterize the running time of an algorithm

for increasing problem sizes by a function T(n)

Units of time

n  1 microsecond ?

n  1 machine instruction?

n  # of code fragments that take constant time?

Units of time

n  1 microsecond ?

 no, too specific and machine dependent
n  1 machine instruction?

 no, still too specific and machine dependent
n  # of code fragments that take constant time?
 yes

unit of space

n  bit?

n  int?

unit of space

n  bit?
 very detailed but sometimes necessary
n  int?
 nicer, but dangerous: we can code a whole

program or array (or disk) in one arbitrary int, so
we have to be careful with space analysis (take
value ranges into account when needed). Better
to think in terms of machine words
 i.e. fixed size, 64 bit words

8

Worst-Case Analysis

n  Worst case running time.

n  A bound on largest possible running time of algorithm on
inputs of size n.
q  Generally captures efficiency in practice, but can be

an overestimate.

n  Same for worst case space complexity

9

Why It Matters

Measuring the efficiency of
algorithms

n  We have two algorithms: alg1 and alg2 that
solve the same problem. Our application
needs a fast running time.

n  How do we choose between the algorithms?

10 CS200 - Complexity

Efficiency of algorithms

n  Implement the two algorithms in Java and
compare their running times?

n  Issues with this approach:
q  How are the algorithms coded? We want to

compare the algorithms, not the implementations.
q  What computer should we use? Choice of

operations could favor one implementation over
another.

q  What data should we use? Choice of data could
favor one algorithm over another

11 CS200 - Complexity

Measuring the efficiency of
algorithms
n  Objective: analyze algorithms independently

of specific implementations, hardware, or
data

n  Observation: An algorithm’s execution time is
related to the number of operations it
executes

n  Solution: count the number of STEPS:
significant, constant time, operations the
algorithm will perform for an input of given
size

12 CS200 - Complexity

Example: array copy

n  Copying an array with n elements requires
___ invocations of copy operations

How many steps?

How many instructions?

How many micro seconds?

13 CS200 - Complexity

Example: linear Search

n  What is the maximum number of steps linSearch takes?
 what’s a step here?
 for an Array of size 32?
 for an Array of size n?

14 CS200 - Complexity

 private int linSearch(int k){
 for(int i = 0; i<A.length; i++){
 if(A[i]==k)
 return i;
 }
 return -1;
 }

Binary Search
private int binSearch(int k, int lo, int hi) {
// pre: A sorted
// post: if k in A[lo..hi] return its position in A else return -1
 int r;
 if (lo>hi) r = -1;
 else {
 int mid = (lo+hi)/2;
 if (k==A[mid]) r = mid;
 else if (k < A[mid])

 r = binSearch(k,lo,mid-1);
 else
 r = binSearch(k,mid+1,hi);
 }
 return r;
}

CS200 - Complexity 15

What’s the maximum
number of steps binSearch
takes ?

what’s a step here?

for |A| = 31, 63, 1000

for |A| = n

Growth rates

A.  Algorithm A requires n2 / 2 steps to solve a problem
of size n

B.  Algorithm B requires 5n+10 steps to solve a
problem of size n

n  Which one would you choose?

16 CS200 - Complexity

Growth rates

n  When we increase the size of input n, how the
execution time grows for these algorithms?

n  We don’t care about small input sizes

n 1 2 3 4 5 6 7 8
n2 / 2 .5 2 4.5 8 12.5 18 24.5 32
5n+10 15 20 25 30 35 40 45 50

n 50 100 1,000 10,000 100,000
n2 / 2 1250 5,000 500,000 50,000,000 5,000,000,000
5n+10 260 510 5,010 50,010 500,010

17 CS200 - Complexity

Growth Rates

18

Algorithm A
Algorithm B

CS200 - Complexity

Growth rates
n  Algorithm A requires n2 / 2 +1 operations to solve a

problem of size n
n  Algorithm B requires 5n + 10 operations to solve a

problem of size n
n  For large enough problem size algorithm B is more

efficient
n  Important to know how quickly an algorithm’s

execution time grows as a function of program size
q  We focus on the growth rate:

n  Algorithm A requires time proportional to n2

n  Algorithm B requires time proportional to n
n  B’s time requirement grows more slowly than A’s time requirement (for

large n)

19 CS200 - Complexity

Order of magnitude analysis

n  Big O notation: A function f(x) is O(g(x)) if there exist
two positive constants, c and k, such that
 f(x) ≤ c*g(x) ∀ x > k

n  Focus is on the shape of the function: g(x)

n  Focus is on large x

n  C and k are called witnesses. There are infinitely
many witness pairs (C,k)

 20 CS200 - Complexity

CS200 - Complexity 21

f(x)
C g(x)

x k

f (x) =Ο(g(x))

y

CS200 - Complexity 22

f(x)
C * g(x)

x k

Let f and g be functions. We say
 f(x) = O(g(x))
If there are positive constants C and
k such that,
 f(x) ≤ C g(x)
whenever x > k

CS200 - Complexity 23

f(x)

x

f (x) =Ω(g(x))
C g(x)

k

CS200 - Complexity 24

f(x)

x

C * g(x)

Let f and g be functions. We say that
 f(x) = Ω (g(x))
if there are positive constants C and k s.t,
 f(x) ≥ Cg(x)
whenever x > k

CS200 - Complexity 25

f(x)
C1 g(x)

x

f (x) =Θ(g(x))
C2 g(x)

k

CS200 - Complexity 26

f(x)
C1 * g(x)

x

C2 * g(x)

Let f and g be functions. We say that
f(x) = Θ (g(x))
 if f(x) = O(g(x)) and
 f(x) = Ω(g(x))

Question

f(n) = n2+3n

Is f(n) O(n2)
 why?
Is f(n) Ω(n2)
 why?
Is f(n) Θ(n2)
 why?

CS200 - Complexity 27

Question

f(x) = n+log n

Is f(n) O(n) ?
 why?
Is f(n) Ω(n) ?
 why?
Is f(n) Θ(n) ?
 why?

CS200 - Complexity 28

Question

f(n) = nlog n + 2n

Is f(n) O(n) ?
 why?
Is f(n) Ω(n) ?
 why?
Is f(n) Θ(n) ?
 why?

CS200 - Complexity 29

Question

f(x) = n log n + 2n

Is f(n) O(n logn)
 why?
Is f(n) Ω(n log n)
 why?
Is f(n) Θ(n log n)
 why?

CS200 - Complexity 30

Orders of Magnitude
n  O (big O) is used for Upper Bounds in

algorithm analysis: We use O in worst case
analysis: this algorithm never takes more
than this number of steps

We will concentrate on worst case analysis
cs320, cs420:
n  Ω (big Omega) is used for lower bounds in problem

characterization: how many steps does this problem at
least take

n  θ (big Theta) for tight bounds: a more precise
characterization

CS200 - Complexity 31

Order of magnitude analysis

n  Big O notation: A function f(x) is O(g(x)) if there exist
two positive constants, c and k, such that
 f(x) ≤ c*g(x) ∀ x > k

n  c and k are witnesses to the relationship that
f(x) is O(g(x))

n  If there is one pair of witnesses (c,k) then
there are infinitely many (>c, >k).

32 CS200 - Complexity

Common Shapes: Constant

n  O(1)

33 CS200 - Complexity

E.g.:
Any integer/double arithmetic /
logic operation
Accessing a variable or an element
in an array

Questions

n  Which is an example of constant time
operations?
A.  An integer/double arithmetic operation
B.  Accessing an element in an array
C.  Determining if a number is even or odd
D.  Sorting an array
E.  Finding a value in a sorted array

CS200 - Complexity 34

Common Shapes: Linear

n  O(n)

f(n) = a*n + b

a is the slope
b is the Y intersection

35 CS200 - Complexity

Questions

n  Which is an example of a linear time
operation?
A.  Summing n numbers
B.  add(E element) operation for Linked List
C.  Binary search
D.  add(int index, E element) operation for

ArrayList
E.  Accessing A[i] in array A.

CS200 - Complexity 36

Linear

Example: copying an array
for (int i = 0; i < a.size; i++){
 a[i] = b[i];
}

37 CS200 - Complexity

Other Shapes: Sublinear

38 CS200 - Complexity

Common Shapes: logarithm

n  logbn is the number x such that bx = n
 23 = 8 log28 = 3
 24 = 16 log216 = 4

n  logbn: (# of digits to represent n in base b) – 1
n  We usually work with base 2
n  log2n: number of times you can divide n by 2 until

you get to 1
log2n algorithm often break a problem in 2 halves and
then solve 1 half, EXAMPLE?

39 CS200 - Complexity

Logarithms (cont.)

n  Properties of logarithms
q  log(x y) = log x + log y
q  log(xa) = a log x
q  logan = logbn / logba
 notice that logba is a constant so
 logan = O(logbn) for any a and b

n  logarithm is a very slow-growing function

40 CS200 - Complexity

O(log n) in algorithms

O(log n) occurs in divide and conquer
algorithms, when the problem size gets
chopped in half (third, quarter,…) every step

(About) how many times do you need to divide
 1,000 by 2 to get to 1 ?
 1,000,000 ?
 1,000,000,000 ?

CS200 - Complexity 41

Guessing game

I have a number between 0 and 63
How many questions do you need to find it?
 is it >= 32 N
 is it >= 16 Y
 is it >= 24 N
 is it >= 20 N
 is it >= 18 Y
 is it >= 19 Y

What’s the number?

CS200 - Complexity 42

Guessing game

I have a number between 0 and 63
How many questions do you need to find it?
 is it >= 32 N 0
 is it >= 16 Y 1
 is it >= 24 N 0
 is it >= 20 N 0
 is it >= 18 Y 1
 is it >= 19 Y 1

What’s the number? 19 (010011 in binary)

CS200 - Complexity 43

Question

n  Which is an example of a log time operation?
A.  Determining max value in an unsorted array
B.  Pushing an element onto a stack
C.  Binary search in a sorted array
D.  Sorting an array

CS200 - Complexity 44

n times

Quadratic

O(n2):

for (int i=0; i < n; i++){
 for (int j=0; j < n; j++) {
 …
 }
}

n times

45 CS200 - Complexity

Other Shapes: Superlinear

Polynomial (xa), exponential (ax)

46 CS200 - Complexity

Big-O for Polynomials

Theorem: Let

where are real numbers.
Then is

Example: x2 + 5x is O(x2)

€

f (x) = anx
n + an−1x

n−1 + ...+ a1x + a0

€

an,an−1...,a1,a0

€

f (x)

€

O(xn)

47 CS200 - Complexity

Question

Give a Big O for the following growth function.
 f(n) = (3n2 + 8)(n + 1)

(a)  O(n)
(b)  O(n3)
(c)  O(n2)
(d)  O(1)

Is f(n)= O(n4)?

48 CS200 - Complexity

Combinations of Functions

n  Additive Theorem:

n  Multiplicative Theorem:

Suppose that f1(x) is O(g1(x)) and f2 (x) is O(g2 (x)).
Then (f1 + f2)(x) is O(max(g1(x),g2 (x)).

€

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).
Then (f1 f2)(x) is O(g1(x)g2(x)).

49 CS200 - Complexity

Practical Analysis –
 Code Combinations

n  Sequential
q  Big-O bound: Steepest growth dominates
q  Example: copying of array, followed by binary search

n  n + log(n) O(?)

n  Embedded code
q  Big-O bound multiplicative
q  Example: a for loop with n iterations and a body taking

O(log n) O(?)

50 CS200 - Complexity

Worst and Average Case
Time Complexity
n  Worst case

q  Just how bad can it get: the maximal number of steps
q  Our focus in this course

n  Average case
q  Amount of time expected “usually”
q  In this course we will hand wave when it comes to average case

n  Best case
q  The smallest number of steps
q  Not very useful, e.g. sorting by repeatedly permuting the array

and testing whether array is sorted: best case O(n),
 worst case O(n.n!)

n  Example: searching for an item in an unsorted array

51 CS200 - Complexity

Question
1 public void insertElementAt(Object obj, int index) {
 …
2 for (i = elementCount; i > index; i--) {
3 elementData[i] = elementData[i-1];

 }
 ...

 }

How many times will line 3 repeat?

52 CS200 - Complexity

Practical Analysis –
Dependent loops

 for (i = 0; i < n; i++) {
 for (j = 0; j < i; j++) {
 ...
 }
 }
 ...

i = 0: inner-loop iters =0

i = 1: inner-loop iters =1

i = n-1: inner-loop iters =n-1

.

.

.

53 CS200 - Complexity

Question

 for (i = 0; i < n; i++) {
 for (j = 0; j < i; j++) {
 ...
 }
 }
 ...

54 CS200 - Complexity

What is the Big O for this code?
A.  O(n)
B.  O(log n)
C.  O(nlogn)
D.  O(n2)

Total = 0 + 1 + 2 + ... + (n-1)
 f(n) = n*(n-1)/2

Loop Example

CS200 - Complexity 55

public int f7(int n){
 int s = n;
 int c = 0;
 while(s>1){
 s/=2;
 for(int i=0;i<n;i++)
 for(int j=0;j<=i;j++)
 c++;
 }
 return c;

}

How many outer
(while) iterations?

How many inner
for i
 for j
iterations?

Big O complexity?

Practical Analysis - Recursion

n  Number of operations depends on :
q  number of calls
q  work done in each call

n  Examples:
q  factorial: how many recursive calls?
q  binary search?

n  We will devote more time to analyzing
recursive algorithms later in the course.

56 CS200 - Complexity

Example Recursive Code

CS200 - Complexity 57

public int divCo(int n){
 if(n<=1)
 return 1;
 else
 return 1 + divCo(n-1) + divCo(n-1);

}

How many recursive calls?
hint: draw the call tree

How much work per call?
What is the role of “return 1” and return 1+…” ?

Big O complexity?

Final Comments

n  Order-of-magnitude analysis focuses on large
problems

n  If the problem size is always small, you can probably
ignore an algorithm’s efficiency

n  If a program responds faster than I can type,
efficiency does not matter that much

n  Weigh the trade-offs between an algorithm’s time
requirements and its memory requirements,
expense of programming/maintenance…

58 CS200 - Complexity

