
Computational Complexity, 
Orders of Magnitude 

n  Rosen Ch. 3.2: Growth of Functions 
n  Rosen Ch. 3.3: Complexity of Algorithms 
n  Prichard Ch. 10.1: Efficiency of Algorithms 
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Algorithm and Computational 
Complexity 
n  An algorithm is a finite sequence of precise 

instructions for performing a computation for 
solving a problem. 

n  Computational complexity measures the 
processing time and computer memory 
required by the algorithm to solve problems 
of a particular problem size. 
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Time Complexity of an Algorithm 

How do we measure the complexity (time, space) of an 
algorithm? What is this a function of? 

n  The size of the problem: an integer n 
n  # inputs  (e.g., for sorting problem) 
n  # digits of input (e.g., for the primality problem) 
n  sometimes more than one integer 

 
n  We want to characterize the running time of an algorithm 

for increasing problem sizes by a function T(n) 



Units of time 

n  1 microsecond ?  
 
 
n  1 machine instruction? 

 
n  # of code fragments that take constant time? 

 



Units of time 

n  1 microsecond ? 

           no, too specific and machine dependent 
n  1 machine instruction? 
 
           no, still too specific and machine dependent 
n  # of code fragments that take constant time? 
           yes 

 



unit of space 

n  bit? 
 
n  int? 



unit of space 

n  bit? 
       very detailed but sometimes necessary 
n  int? 
       nicer, but dangerous: we can code a whole 

program or array (or disk) in one arbitrary int, so 
we have to be  careful with space analysis (take 
value ranges into account when needed). Better 
to think in terms of machine words 
     i.e. fixed size, 64 bit words 
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Worst-Case Analysis 

n  Worst case running time.   

n  A bound on largest possible running time of algorithm on 
inputs of size n. 
q  Generally captures efficiency in practice, but can be 

an overestimate. 

n  Same for worst case space complexity  
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Why It Matters 



Measuring the efficiency of 
algorithms 

n  We have two algorithms:  alg1 and alg2 that 
solve the same problem.  Our application 
needs a fast running time. 

n  How do we choose between the algorithms? 
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Efficiency of algorithms 

n  Implement the two algorithms in Java and 
compare their running times? 

n  Issues with this approach: 
q  How are the algorithms coded?  We want to 

compare the algorithms, not the implementations. 
q  What computer should we use?  Choice of 

operations could favor one implementation over 
another. 

q  What data should we use? Choice of data could 
favor one algorithm over another 
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Measuring the efficiency of 
algorithms 
n  Objective:  analyze algorithms independently 

of specific implementations, hardware, or 
data 

n  Observation: An algorithm’s execution time is 
related to the number of operations it 
executes 

n  Solution:  count the number of STEPS: 
significant, constant time, operations the 
algorithm will perform for an input of given 
size 
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Example: array copy 

n  Copying an array with n elements requires 
___  invocations of copy operations 

 
How many steps? 
 
How many instructions? 
 
How many micro seconds? 
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Example: linear Search 
  

 
 
 
 
 
 
 
 

n  What is the maximum number of steps linSearch takes? 
         what’s a step here? 
         for an Array of size 32? 
         for an Array of size n? 
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 private int linSearch(int k){ 
  for(int i = 0; i<A.length; i++ ){ 
   if(A[i]==k) 
    return i;   
  } 
  return -1; 
 } 



Binary Search 
private int binSearch(int k, int lo, int hi) { 
// pre: A sorted 
// post: if k in A[lo..hi] return its position in A    else return -1  
   int r; 
   if (lo>hi)      r = -1; 
   else { 
       int mid = (lo+hi)/2; 
        if (k==A[mid])     r = mid; 
        else if (k < A[mid]) 

      r = binSearch(k,lo,mid-1);    
                else  
                    r = binSearch(k,mid+1,hi);  
  } 
  return r; 
} 
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What’s the maximum  
number of steps binSearch 
takes ? 
 
what’s a step here? 
 
for |A| = 31, 63, 1000 
 
for |A| = n 



Growth rates 

A.  Algorithm A requires n2 / 2  steps to solve a problem 
of size n 

B.  Algorithm B requires 5n+10 steps to solve a 
problem of size n 

n  Which one would you choose? 
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Growth rates 

n  When we increase the size of input n, how the 
execution time grows for these algorithms?  

n  We don’t care about small input sizes 
 

n 1 2 3 4 5 6 7 8 
n2 / 2  .5 2 4.5 8 12.5 18 24.5 32 
5n+10  15 20 25 30 35 40 45 50 

n 50 100 1,000 10,000 100,000 
n2 / 2  1250 5,000 500,000 50,000,000 5,000,000,000 
5n+10  260 510 5,010 50,010 500,010 
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Growth Rates 
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Algorithm A 
Algorithm B 
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Growth rates 
n  Algorithm A requires n2 / 2  +1 operations to solve a 

problem of size n 
n  Algorithm B requires 5n + 10 operations to solve a 

problem of size n 
n  For large enough problem size algorithm B is more 

efficient 
n  Important to know how quickly an algorithm’s 

execution time grows as a function of program size 
q  We focus on the growth rate: 

n  Algorithm A requires time proportional to n2 

n  Algorithm B requires time proportional to n 
n  B’s time requirement grows more slowly than A’s time requirement (for 

large n) 
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Order of magnitude analysis 

n  Big O notation:  A function f(x) is O(g(x)) if there exist 
two positive constants, c and k, such that  
   f(x) ≤ c*g(x)       ∀ x > k 

n  Focus is on the shape of the function: g(x) 

n  Focus is on large x 

n  C and k are called witnesses. There are infinitely 
many witness pairs (C,k) 
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f(x) 
C g(x) 

x k 

f (x) =Ο(g(x))

y 
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f(x) 
C * g(x) 

x k 

Let f and g be functions. We say  
        f(x) = O(g(x))   
If there are positive constants C and 
k  such that,  
       f(x)  ≤ C g(x)  
whenever x > k 
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f(x) 

x 

f (x) =Ω(g(x))
C g(x) 

k 
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f(x) 

x 

C * g(x) 

Let f and g be functions. We say that 
  f(x) =  Ω (g(x))   
if there are positive constants C and k s.t,  
         f(x) ≥ Cg(x) 
whenever x > k 
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f(x) 
C1 g(x) 

x 

f (x) =Θ(g(x))
C2 g(x) 

k 
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f(x) 
C1 * g(x) 

x 

C2 * g(x) 

Let f and g be functions. We say that    
f(x) = Θ (g(x)) 
 if f(x) = O(g(x)) and  
    f(x) = Ω(g(x)) 
 



Question 

f(n) = n2+3n 
 
Is f(n) O(n2) 
   why?  
Is f(n) Ω(n2) 
   why? 
Is f(n) Θ(n2) 
   why? 
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Question 

f(x) = n+log n 
 
Is f(n) O(n)  ? 
 why? 
Is f(n) Ω(n)  ? 
 why? 
Is f(n) Θ(n)  ? 
   why? 
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Question 

f(n) = nlog n + 2n 
 
Is f(n) O(n)  ? 
   why? 
Is f(n) Ω(n)  ? 
   why? 
Is f(n) Θ(n)  ? 
   why? 
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Question 

f(x) = n log n + 2n 
 
Is f(n) O(n logn) 
   why? 
Is f(n) Ω(n log n) 
   why? 
Is f(n) Θ(n log n) 
   why? 
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Orders of Magnitude 
n  O (big O) is used for Upper Bounds in 

algorithm analysis: We use O in worst case 
analysis: this algorithm never takes more 
than this number of steps 

We will concentrate on worst case analysis 
cs320, cs420: 
n  Ω (big Omega) is used for lower bounds in problem 

characterization: how many steps does this problem at 
least take 

n  θ  (big Theta) for tight bounds: a more precise 
characterization 
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Order of magnitude analysis 

n  Big O notation:  A function f(x) is O(g(x)) if there exist 
two positive constants, c and k, such that  
   f(x) ≤ c*g(x)       ∀ x > k 

 

n  c and k are witnesses to the relationship that 
f(x) is O(g(x)) 

n  If there is one pair of witnesses (c,k) then 
there are infinitely many (>c, >k). 
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Common Shapes: Constant 

n  O(1) 
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E.g.: 
Any integer/double arithmetic / 
logic operation 
Accessing a variable or an element  
in an array 
 



Questions 

n  Which is an example of constant time 
operations? 
A.  An integer/double arithmetic operation 
B.  Accessing an element in an array 
C.  Determining if a number is even or odd
D.  Sorting an array
E.  Finding a value in a sorted array 

CS200 - Complexity 34 



Common Shapes: Linear 

n  O(n) 

f(n) = a*n + b 
 
a is the slope 
b is the Y intersection 
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Questions 

n  Which is an example of a linear time 
operation? 
A.  Summing n numbers 
B.  add(E element) operation for Linked List 
C.  Binary search
D.  add(int index, E element) operation for 

ArrayList 
E.  Accessing A[i] in array A. 
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Linear 

Example: copying an array 
for (int i = 0; i < a.size; i++){
    a[i] = b[i];
}
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Other Shapes: Sublinear 
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Common Shapes: logarithm  

n  logbn is the number x such that bx = n      
      23 = 8       log28 = 3 
      24 = 16   log216 = 4 

n  logbn: (# of digits to represent n in base b) – 1 
n  We usually work with base 2 
n  log2n: number of times you can divide n by 2 until 

you get to 1 
log2n algorithm often break a problem in 2 halves and 
then solve 1 half, EXAMPLE? 
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Logarithms (cont.) 

n  Properties of logarithms 
q  log(x y) = log x + log y 
q  log(xa) = a log x 
q  logan = logbn / logba 
    notice that logba is a constant so 
             logan = O(logbn) for any a and b  

n  logarithm is a very slow-growing function 
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O(log n)  in algorithms 

O(log n) occurs in divide and conquer  
algorithms, when the problem size gets 
chopped in half (third, quarter,…) every step 
 
(About) how many times do you need to divide 
    1,000 by 2 to get to 1 ? 
    1,000,000 ? 
    1,000,000,000 ? 
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Guessing game 

I have a number between 0 and 63 
How many questions do you need to find it?  
 is it >=  32    N 
 is it >=  16    Y 
 is it >=  24    N 
 is it >=  20    N 
 is it >=  18    Y 
 is it >=  19    Y 
 
What’s the number? 
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Guessing game 

I have a number between 0 and 63 
How many questions do you need to find it?  
 is it >=  32    N            0 
 is it >=  16    Y            1 
 is it >=  24    N            0 
 is it >=  20    N            0 
 is it >=  18    Y            1 
 is it >=  19    Y            1 
 
What’s the number?    19   (010011 in binary) 
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Question 

n  Which is an example of a log time operation? 
A.  Determining max value in an unsorted array 
B.  Pushing an element onto a stack 
C.  Binary search in a sorted array
D.  Sorting an array 
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n times 

Quadratic 

O(n2): 

for (int i=0; i < n; i++){
   for (int j=0; j < n; j++) {
     …
   }
}

n times 
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Other Shapes: Superlinear 

Polynomial (xa), exponential (ax) 
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Big-O for Polynomials 

Theorem: Let  
 
 
where                           are real numbers. 
Then          is 

Example:  x2 + 5x is O(x2) 
 

€ 

f (x) = anx
n + an−1x

n−1 + ...+ a1x + a0

€ 

an,an−1...,a1,a0

€ 

f (x)

€ 

O(xn)
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Question 

Give a Big O for the following growth function. 
            f(n) = (3n2 + 8)(n + 1) 
 
(a)  O(n) 
(b)  O(n3) 
(c)  O(n2) 
(d)  O(1) 

Is f(n)= O(n4)? 
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Combinations of Functions 

n  Additive Theorem: 

n  Multiplicative Theorem:  

Suppose that f1(x) is O(g1(x)) and f2 (x) is O(g2 (x)). 
Then ( f1 + f2 )(x) is O(max(g1(x),g2 (x)).

€ 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 f2)(x) is O(g1(x)g2(x)).
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Practical Analysis –  
           Code  Combinations 

n  Sequential 
q  Big-O bound: Steepest growth dominates 
q  Example: copying of array, followed by binary search  

n  n + log(n)   O(?) 

n  Embedded code 
q  Big-O bound multiplicative 
q  Example: a for loop with n iterations and a body taking 

O(log n)   O(?) 
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Worst and Average Case  
Time Complexity 
n  Worst case 

q  Just how bad can it get: the maximal number of steps 
q  Our focus in this course 

n  Average case 
q  Amount of time expected “usually” 
q  In this course we will hand wave when it comes to average case 

n  Best case  
q  The smallest number of steps   
q  Not very useful, e.g. sorting by repeatedly permuting the array 

and testing whether array is sorted: best case O(n), 
    worst case O(n.n!) 

n  Example:  searching for an item in an unsorted array 
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Question 
1        public void insertElementAt(Object obj, int index) { 
           … 
2            for (i = elementCount; i > index; i--) {    
3                   elementData[i] = elementData[i-1]; 

    } 
           ... 

 } 

How many times will line 3 repeat? 
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Practical Analysis –  
Dependent loops 

 .... 
 for (i = 0; i < n; i++) { 
  for (j = 0; j < i; j++) { 
       ... 
  } 
 } 
 ... 

 

i = 0:    inner-loop iters =0 

i = 1:    inner-loop iters =1 

i = n-1: inner-loop iters =n-1 

. 

. 

. 
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Question 

 .... 
 for (i = 0; i < n; i++) { 
  for (j = 0; j < i; j++) { 
       ... 
  } 
 } 
 ... 
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What is the Big O for this code? 
A.  O(n) 
B.  O(log n) 
C.  O(nlogn) 
D.  O(n2) 
 

Total = 0 + 1 + 2 + ... + (n-1) 
 f(n)  = n*(n-1)/2  



Loop Example 
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public int f7(int n){ 
 int s = n; 
 int c = 0; 
 while(s>1){ 
  s/=2;    
  for(int i=0;i<n;i++) 
   for(int j=0;j<=i;j++) 
    c++; 
 }   
 return c; 

} 

How many outer 
(while) iterations? 

How many inner 
for i 
     for j  
iterations? 

Big O complexity? 



Practical Analysis - Recursion 

n  Number of operations depends on : 
q  number of calls 
q  work done in each call 

n  Examples: 
q  factorial: how many recursive calls? 
q  binary search? 

n  We will devote more time to analyzing 
recursive algorithms later in the course. 
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Example Recursive Code 
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public int divCo(int n){ 
 if(n<=1) 
  return 1; 
 else 
  return 1 + divCo(n-1) + divCo(n-1); 

} 

How many recursive calls? 
hint: draw the call tree 

How much work per call? 
What is the role of “return 1” and return 1+…” ? 

Big O complexity? 



Final Comments 

n  Order-of-magnitude analysis focuses on large 
problems 

n  If the problem size is always small, you can probably 
ignore an algorithm’s efficiency 

n  If a program responds faster than I can type, 
efficiency does not matter that much 

n  Weigh the trade-offs between an algorithm’s time 
requirements and its memory requirements, 
expense of programming/maintenance… 
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