

CS200: Trees

Rosen Ch. 11.1 \& 11.3
Prichard Ch. 11

A node has only one parent!
Except the root: zero parents

D

F

Tree grows top to bottom!

Degree: node: \# children tree: max node degree Edge

Depth/Level: root: 1 child: level

Height: max level

The parent child relationship is generalized to the relationship of ancestor and descendant

Applications - File System

Applications - Parse Trees

Used in compilers to check syntax


```
Predictively parsing expressions
    expr = expr "+" term | term
    term = term "*" factor | factor
    factor = number | "(" expr ")"
```

What's the problem?
For each non-terminal (expr, term, factor) create a method recognizing that non-terminal.
That method implements the alternatives on the RHS of its production.

When encountering a terminal token, check whether it is on input, and read passed it ("consume it").
When encountering a non-terminal, call its method.

Predictively parsing expressions

```
expr = expr "+" term | term
term = term "*" factor | factor
```


What's the solution?

factor = number |"(" expr ")"
For each non-terminal (expr, term, factor) create a method recognizing that non-terminal. That method implements the alternatives on the RHS of its production. When encountering a terminal token, check whether it is on input, and read passed it. When encountering a nonterminal, call its method.

The grammar is left recursive: expr will call expr will call expr etc. without ever reading any tokens

Alternative, iterative gramm
expr = term ("+" term)*
term = factor ("*" factor)*
factor = number | "(" expr ")"
(...) ${ }^{*}$ is implemented with a while loop
Let's go check out some code:
Parsing SIMPLE SUM INFIX expressions

Binary Trees

- A binary tree is a set T of nodes such that either
- T is empty, or
- T is partitioned into three disjoint subsets:
- A single node r, the root
- Two binary trees, the left and right subtrees of r

left subtree

Tree Terminology

- Level/depth of a node n in a tree T
- If n is the root of T, it is at level 1
- If n is not the root of T, its level is 1 greater than the level of its parent
- Height: max level

Starting at level 1 and counting nodes for path length is the Prichard style (Rosen starts at 0)

Height of a Binary Tree

- If T is empty, its height is 0 .
- If T is a non empty binary tree,
$\operatorname{height}(T)=1+\max \{h e i g h t(T L), \operatorname{height}(T R)\}$
Height of $T_{L}-T_{R}^{\text {root }}$ Height of T_{R}

Binary trees with same nodes

 but different heights

Operations of the Binary Tree

- Create Tree consisting of a Leaf Node
- Create Tree with one or two existing subtrees
- Add and remove node and subtrees
- Retrieve or set the data in the root
- Determine whether the tree is empty

Possible operations

```
Root
Left subtree
Right subtree
createBinaryTree()
makeEmpty()
isEmpty()
getRootItem()
setRootItem()
attachLeft()
attachRight()
attachLeftSubtree()
attachRightSubtree()
detachLeftSubtree()
detachRightSubtree()
getLeftSubtree()
getRightSubtree()
```


Example

// Draw these trees
tree1.setRootItem("F")
tree1.attachLeft("G")
tree2.setRootItem("D")
tree2.attachLeftSubtree(tree1)
tree3.setRootItem("B")
tree3.attachLeftSubtree(tree2)
tree3.attachRight("E")
tree4.setRootItem("C")
binTree.createBinaryTree("A", tree3, tree4)

A reference-based representation

Tree Node

public TreeNode<T> \{
T item;
TreeNode<T> leftChild;
TreeNode<T> rightChild;

1: Binary Tree Node

public TreeNode(T newItem) \{
item = newItem;
leftchild = null;
rightChild = null;
\}
public TreeNode(T newItem, TreeNode<T> left, TreeNode<T>
right) \{
item = newItem;
leftChild = left;
rightChild = right;
\}
\}

Tree

```
// A Binary Tree
public class BinaryTree<T> {
    private TreeNode root;
    // empty tree
    public BinaryTree(){
            this.root = null;
    }
    // rootItem
    public BinaryTree(treeNode node){
            this.root = node;
    }
```

2: Binary Tree
// methods that manipulate the whole binary tree
\}

Building a tree bottom up

- Using a TreeNode constructor: public TreeNode(T item, TreeNode left, TreeNode right)\{ this.item = item;
this.left = left;
this.right = right;

> TreeNode tn1 = new TreeNode("abc");
> TreeNode tn2 = new TreeNode("stu");
> TreeNode root = new TreeNode("pqr",tn1,tn2);

Traversal Algorithms

- The traversal of a tree is the process of "visiting" every node of the tree
- Display a portion of the data in the node.
- Process the data in the node
- Because a tree is not linear, there are many ways that this can be done.

Breadth-first traversal (BFS)

- Breadth-first processes the tree level by level starting at the root and handling all the nodes at a particular level from left to right.

Breadth-first traversal

60-20-70-10-40-30-50

Depth-first traversals (DFS)

- DFS recursively follows the parent-child links
- Three choices of when to visit the root r.

1. PREprder: before it traverses both of r 's subtrees
2. INorder: after it has traversed r's left subtree (before it traverses r's right subtree)
3. POSTorder: after it has traversed both of r 's subtrees

- visiting $=$ displaying or manipulating information (e.g. the item, or the item and the result of visiting the children)

Depth First: Preorder traversal

- Preorder traversal processes the information at the root, followed by the entire left subtree and concluding with the entire right subtree.

Depth First: Preorder traversal

$60-20-10-40-30-50-70$

Depth First: Inorder traversal

- Inorder traversal processes all the information in the left subtree before processing the root.
- It finishes by processing all the information in the right subtree.

Depth First: Inorder traversal

10-20-30-40-50-60-70

Depth First: Postorder traversal

- Postorder traversal processes the left subtree, then the right subtree and finishes by processing the root.

Depth First: Postorder traversal

$10-30-50-40-20-70-60$

What is the preorder traversal of this tree?
A. 60-20-10-70-40-30-50
B. 10-20-60-70-30-40-50
C. $10-20-30-50-40-70-60$

What is the postorder traversal of this tree?
A. 60-20-10-70-40-30-50
B. 10-20-60-70-30-40-50
C. $10-20-30-50-40-70-60$

20 70

10

40

30

What is the inorder traversal of this tree?
A. 60-20-10-70-40-30-50
B. 10-20-60-70-30-40-50
C. $10-20-30-50-40-70-60$

Preorder algorithm

public void preorderTraverse()\{
if(debug)
System.out.printIn("Pre Order Traversal");
if (!isEmpty())
preorderTraverse(root,"");
else
System.out.println("root is null");
\}
public void preorderTraverse(TreeNode node, String indent)\{
System.out.printIn(indent+node.getltem());
if(node.getLeft()!=null) preorderTraverse(node.getLeft(),indent+" "); if(node.getRight()!=null) preorderTraverse(node.getRight(),indent+" ");

- What does the inorder algorithm look like?
A. Put "display" at beginning
B. Put "display" in middle
c. Put "display" at end

Implementing Traversal with

 Iterators- Use a queue to order the nodes according to the type of traversal.
- Initialize iterator by type (pre, post or in) and enqueue all nodes in order necessary for traversal
- dequeue in next operation

Using TreeIterator for Preorder

Using TreeIterator for Inorder

Using TreeIterator for Postorder

BFS: Level Order Algorithm

- Use a queue to track unvisited nodes
- For each node that is dequeued,
- enqueue each of its children
- until queue empty

LevelOrder

Categories of Data Structures

- Position-oriented data structures: access is by position/index (get(i))
- Value-oriented structures: access is by value (get(Value))
- Whether a data structure is index or value oriented depends often on the way they are used.
- Examples?

Binary Search Trees (BST)

- A binary tree (BST) T is a binary search tree if for every node n in T :
- n 's value is greater than all values in its left subtree T_{L}
- n 's value is less than all values in its right subtree T_{R}
- T_{R} and T_{L} are binary search trees
- The Items in BST Nodes must be Comparable!

Tree A
5

6 Tree B 7

BST

- Organization
- the sequence of adding and removing influences the shape of the tree
- Search / Retrieval
- Using inorder traversal WHY inorder? on the search key

2, 1, 4, 5, 3
$1,2,3,4,5$

BST Methods

insert(in newIterm:TreeItemType)

- inserts newltem into a BST whose items have distinct search keys that differ from newltem's
delete(in searchKey: KeyType) throws TreeException
- Deletes the item whose search key equals searchKey. If none exists, the operation fails.
retrieve(in searchKey:KeyType):TreeItemType
- Returns the item whose search key equals searchKey. Returns null if not found.

In P4 we build a symbol table: a search tree of BST nodes.

BST - Search

compare value with node

- null: not found
- == : found
- < : search in the left sub-tree
-> : search in the right sub-tree

Locate 4 in the BST!

Insert: question

Where will " 8 " be added?

Where the search would have looked for it:

Left child of 9

Add 6

BST - Insert

- Always add as a leaf - in the position where the search method would look for it
- Find leaf location
- < root : add to the left sub-tree
- > root: add to the right sub-tree
- Special Cases:
- already there
- empty tree

Inserting an item

insertItem(in treeNode:TreeNode, in newItem:TreeItemType)
// Inserts newItem into the binary search tree of which //treeNode is the root

Let parentNode be the parent of the empty subtree at which search terminates when it seeks newItem's search key
if (search terminated at parentNode's left subtree) \{
set leftChild of parentNode to reference newItem
\}
else \{
set rightChild of parentNode to reference newItem
\}

Inserting an item

insertItem(in treeNode:TreeNode, in newItem:TreeItemType)
// Inserts newItem into the binary search tree of which
// treeNode is the root
if (treeNode is null) \{
create new node with newItem as data
return new node \}
else if (newItem.getKey() < treeNode.getItem().getKey()) \{
treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))
return treeNode $\}$
else \{
treeNode.setRight(insertItem(treeNode.getRight(),newItem)) return treeNode \}

Let's go check out some code

BST - Insert

if (newItem.setKey() < treeNode.setItem().getKey()) \{ treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))

BST - Insert

newItem.getKey() : 6
else \{
treeNode.setRight(insertItem(treeNode.getRight(),newItem))

BST - Insert

newItem.getKey() <- 6
treenode
if (treeNode is null) \{
create new node with newItem as data
return new node

BST - Insert

treeNode.setRight(insertItem(treeNode.getRight(),newItem)) return treeNode

Delete: Cases to Consider

- Delete something that is not there
- Throw exception
- Delete a leaf
- Easy, just set link from parent to null
- Delete a node with one child
- Delete a node with two children

Case 1: one child
delete(5)

Child becomes root

Delete
 Case 2: two children

Which are valid replacement nodes?

4 and 6, WHY?
max of left, min of right
what would be a good one here?
delete(5)

6, WHY?

Digression: inorder traversal

 of BST- In order:
- go left
- visit the node
- go right
- The keys of an inorder traversal of a BST are in sorted order!

Replace root with its leftmost right descendant and replace that node with its right child, if necessary (an easy delete case).
That node is the inorder successor of the root

Delete Case 2: two children

Replace root with its leftmost right descendant and replace that node with its right child, if necessary (an easy delete case). That node is the inorder successor of the root.

Can that node have two children? A left child?

Delete

Case 2: two children

1. Find the inorder successor of N's search key.

- The node whose search key comes immediately after N's search key
- The inorder successor is in the leftmost node in N's right subtree.

2. Copy the item of the inorder successor, M, to the deleting node N .
3. Remove the node M from the tree.

Delete Pseudo Code I

deleteItem(in rootNode:TreeNode, in searchKey:KeyType): TreeNode if (rootNode is null) \{ throw TreeException \}

else if (searchKey < key in rootNode item) \{
//search left
newLeft = deleteItem(rootNode.getLeft(), searchKey)
rootNode.setLeft(newLeft) return rootNode \}
else \{
// search right
repair links to child nodes
newRight = deleteItem(rootNode.getRisitt(), searchKey)
rootNode.setRight(newRight)
return rootNode \}

Delete Pseudo Code II

deleteNode(in treeNode:TreeNode):TreeNode
// deletes the item in the node referenced by treeNode
// returns root of resulting subtree if (treeNode is leaf) \{ return null \}

Case 1: replace root w/child else if (treeNode has only l child c) \{ if (c is left child) \{ return treeNode.getLeft() \} else \{ return treeNode.getRight() \}
\}
Case 2: replace rootItem w/leftmost childItem on right; delete leftMost child on right
else \{ // find and delete leftmost child on right
treeNode.setItem(findLeftMostltem(treeNode.getRight()))
treeNode.setRight(deleteLeftMostNode(treeNode.getRight()));
return treeNode;
Why two methods (not one)?

Delete Pseudo Code III

deleteLeftMostNode(in treeNode:TreeNode):TreeNode
// Deletes the node that is the leftmost descendant of the tree rooted at treeNode
// Returns subtree of deleted node
if (treeNode.getLeft() is null) // found the node to delete
\{ return treeNode.getRight() \}
else \{ // still replacing left nodes
treeNode.setLeft(deleteLeftMostNode(treeNode.getLeft())
return treeNode
\}

Complexity of BST Operations

	Average	Worst
search	$O(\log n)$	$O(n)$
insert	$O(\log n)$	$O(n)$
delete	$O(\log n)$	$O(n)$

When does worst in BST happen?

Trees - more definitions

- m-ary tree
- Every internal vertex has no more than m children.
- Our main focus will be binary trees
- Full m-ary tree
- all interior nodes have m children
- Perfect m-ary tree
- Full m-ary tree where all leaves are at the same level
- Perfect binary tree
- number of leaf nodes: $2^{\text {h-1 }}$
- total number of nodes: $2^{\mathrm{h}}-1$

More definitions

- Complete binary tree of height h
- zero or more rightmost leaves not present at level h
- A binary tree T of height h is complete if
- All nodes at level h-1 and above have two children each, and

- When a node at level h has children, all nodes to its left at the same level have two children each, and
- When a node at level h has one child, it is a left child
- So the leaves at level h go from left to right

More definitions

- balanced tree
- Height of any node's right subtree differs from left subtree by 0 or 1
- A complete tree is balanced

Full? Complete? Balanced?

Question

Full trees are:
A. $\}$
B. $\{A\}$
C. $\{A, B\}$
D. $\{A, B, C\}$
E. None of the above

D

Question

Complete trees are:
A. $\}$
B. $\{A\}$
C. $\{A, B\}$
D. $\{A, B, C\}$
E. None of the above

D

Question

Balanced trees are:
A. $\}$
B. $\{A\}$
C. $\{A, B\}$
D. $\{A, B, C\}$
E. None of the above

D

Complete Binary Tree

Level-by-level numbering of a complete binary tree

1:Jane

2:Bob

4:Alan

3:Tom

6:Nancy

What is the parent child index relationship?.

left child i : at $2 *$.

right child i : at $2 * i+1$.
Lparent i : at $i / 2$.

What is the maximum number of nodes in a complete binary tree with Prichard height h ?

Properties of Trees (Rosen)

1. A tree has a unique path between any two of its vertices.
2. A tree with n vertices has $n-1$ edges.
3. A full binary tree with n internal nodes $n+1$ leaves.

Question

Question : What is the maximum number of nodes at level m (root at level 1) in a binary tree?
A. 2^{m}
B. 2^{m-1}
C. 2^{m+1}

Jane

Bob

Alan

Sorting with a Tree

- Uses the binary search tree ADT to sort an array of records according to search-key
- Efficiency
- Average case: O(n * log n)
- Worst case: O(n²)

Example of Binary sorting

Create Tree

$$
\begin{array}{lllllll}
60 & 20 & 10 & 40 & 70 & 50 & 30
\end{array}
$$

Inorder traverse Tree $\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

n-ary General tree

- Tree with nodes that have no more than n children.
- How can we implement it?

Case 1: using 2 references

Case 1: Using 2 references

We can represent any n-ary tree this way.

Case 2: Using 3 references

